

Cloud Condensation Nuclei Retrievals at Cloud Base in North Dakota

Mariusz Starzec

Motivation

- Compare University of Wyoming (UWyo) and Droplet Measurement Technologies (DMT) cloud condensation nuclei (CCN) concentration retrievals from cloud base
- Develop a way that allows for retrieving the cloud condensation nuclei concentration (CCNC) at any supersaturation (SS)

Background

- Aerosols act as nuclei for water to condense on, becoming condensation nuclei (CN)
- Rising parcels of air expand and cool creating a supersatured environment
 - Allows for more vapor to diffuse on the CN
 - Condensation releases latent heat, making parcels rise more
 - Creates positive feedback, allowing for more condensational growth
- When CN become large enough, they are "activated" and become CCN
 - Grow by condensation until they become cloud droplets

Background

- Different particles become CCN at different SS
 - Size
 - Composition
 - Hygroscopic or hydrophobic

Picture Source: Dr. S. N. Tripathi, Department of Civil Engineering, Indian Institute of Technology Kanpur

Mature With aerosol pollution (polluted)

- Larger Drops:

- Fall out quicker
- Increased loading on updraft early on

- More stay above freezing level, limiting latent heat release due to freezing

- Smaller Drops:

- "Competition" for water vapor allows updraft to sustain itself

- Lighter, more easily lofted below freezing level, where drops freeze allowing energy to strength updraft - More of a "positive" feedback mechanism

Picture Source: Seoung-Soo Lee, Atmospheric science: Aerosols, clouds and climate., Natural Geoscience, 4, 826-827,(2011).

Importance

- Climate Models
 - Parameterizations of convection and cloud
- Weather Prediction Models
 - Precipitation amounts
 - Convective initiation
- Satellite retrievals
 - Assumptions of surface reflectance and aerosol optical properties (e.g. single-scattering albedo) are made
 - May effect accuracy

POLCAST4

- Polarimetric Cloud Analysis and Seeding Test 4
- Field campaign held in the summer of 2012
- Goal: Evaluate effects of hygroscopic seeding flares
- Aircraft equipped with two different instruments to measure CCN concentrations (CCNC)
 - Droplet Measurements Technology (DMT) CCN
 Counter
 - CCNC at supersaturations of 0.2, 0.3, and 0.6%
 - University of Wyoming (UWyo) CCN Counter
 - CCNC at supersaturations of 0.6%

POLCAST4 Aircraft Instrument Configuration

Software

- Airborne Data Processing and Analysis (ADPAA)
 - Open-source software
 - Quality control and assurance checks
 - Contains a compilation of scripts that can be used on a variety of airborne instruments by different users
 - Allows for direct comparison of datasets

Results: Counter Comparison

- 8 Days in July 2012
- CCNC at 0.6% SS
- On certain days, DMT counter has much higher values than UWyo counter

Results: Counter Comparison

Results: DMTCCNC Fits

- Three data points are given for a certain timeframe
 - CCNC at SS of .2%, .3% and .6%
- Ability to apply a fit to the data

 $CCNC = cSS^k$

- Can generate a fit about every 10 minutes
- Statistical analysis can be performed on the fit parameters (c,k) across many cases/times

Conclusions

- On certain days, the DMT counter had higher values of CCNC compared to UWyo counter at 0.6% supersaturation
- Fits allow the CCNC to be determined at any supersaturation
 - May be important for both climate and weather prediction models
- Fits may be compared to satellite retrievals
 - Studies: Aerosol retrievals \rightarrow CCNC
 - Method allows for possible verification to studies
 - Correlate CCN effective radius vs. CCNC vs. SS

Future Work

- Which CCN counter was right?
 - What caused the discrepancy?
 - Look into data from other airborne probes at the time
- Get statistics on fit parameters 'c' and 'k' such as mean, standard deviation, etc
 - Help see temporal variation in CCNC
- Apply fits to surface data
 - Taken continuously for over a month in summ er of 2012
 - Hourly/daily variations
- Compare to satellite retrievals

Questions?

