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Motivation
• The melting layer is the transition from 

ice to liquid in cold precipitating cloud 
systems.

• Most studies on the melting layer have 
been through remote sensing with radar, 
laboratory experiments, and numerical 
models.

• Relatively few studies have used in-situ 
observations due to difficulties in direct 
measurements.

• In-situ observations can improve the 
representation of melting layer 
microphysics.
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Radar Bright Band Signal
• Magnitude up to 10 dBZ.

• Contributing Factors
• Increase in dielectric 

constant of 
hydrometeors 
beginning to melt

• Nonsphericity of 
melting hydrometeors

• Enhanced aggregation
• Coupling of 

aggregation and 
breakup
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Adapted from Heymsfield et al. (2015) Figure 2



(Quasi)-isothermal Layer
• Diabatic cooling due to 

melting associated with a 0 °C 
isothermal or quasi-isothermal 
layer: 
• Deepens the melting layer
• Produces mesoscale 

circulations
• Enhances frontogenesis
• Processes are important in 

forecasting surface 
precipitation type

3Adapted from Stewart et al. (1984) Figure 12



Summary of Findings From In-situ Studies
• Large aggregates are the 

most common hydrometeor 
at 0 °C.

• Aggregation is enhanced 
within the melting layer.

4Adapted from Willis and Heymsfield (1989) Figure 9



Summary of Findings From In-situ Studies
• Large aggregates are the 

most common hydrometeor 
at 0 °C.

• Aggregation is enhanced 
within the melting layer.

• Relative humidity influences 
the melting process.
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Adapted from Heysmfield et al. (2021) Figure 12



Summary of Findings From In-situ Studies
• Large aggregates are the 

most common hydrometeor 
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in hydrometeor area ratio.

6Adapted from Heymsfield et al. (2015) Figure 19



Summary of Findings From In-situ Studies
• Large aggregates are the 

most common hydrometeor 
at 0 °C.

• Aggregation is enhanced 
within the melting layer.

• Relative humidity influences 
the melting process.

• Melting causes an increase 
in hydrometeor area ratio.

• Melting modifies the 
particle size distribution.
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Adapted from Stewart et al. (1984) Figure 9
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Objective
• Extend previous in-situ analysis of the melting layer:

• Characterize the particle size distribution and area 
ratio.

• Determine the impact of relative humidity on the 
melting process.

• Use direct observations from several recent NASA field 
campaigns which includes a variety of environments 
and storm types.
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NASA Field Campaigns
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Project Year Season Location Cloud Precipitation

MC3E 2011 Spring Great Plains 2D-C HVPS3

GCPEX 2012 Winter Georgian Bay 2D-C HVPS3

IPHEX 2014 Spring Southeast US 2D-S HVPS3

OLYMPEX 2015* Late Fall Western Washington 2D-S (2) HVPS3

IMPACTS 2020 Winter Northeast US 2D-S (2) HVPS3



Imaging Probes
• Two-Dimensional Stereo 

(2D-S) probe has 10 µm 
pixel resolution

• High Volume Precipitation 
Spectrometer Version 3 
(HVPS3) has 150 µm pixel 
resolution

• Data processed with the 
ADPAA software package 
and utilizes the SODA2
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Imaging Probes

11Adapted from Wagner and Delene (2022) Figure 1



Area Ratio

• Area ratio is the ratio of the 
particle image area to the fast 
circle area.

• Low resolution probes such as 
the HVPS3 have lower area 
ratio for circular hydrometeors.
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2D-S HVPS3
Image Size [µm2] 282,400 270,000
Fast Circle [µm2] 303,054 368,212
Area Ratio 0.93 0.73



Melting Layer Depth

• Top: 0 °C ice-bulb isotherm (frozen hydrometeors, typically 
aggregates)

• Middle: Mixed phase & partially melted hydrometeors

• Bottom: All hydrometeors melted – images appear fully round
13
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Ice-bulb Temperature Calculation
• Ice-bulb 

temperature (and 
wet-bulb) 
calculated with 
the new bulbtemp
ADPAA module 
that inputs:
• Air temperature
• Dew point 

temperature
• Pressure
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Melting Layer Profile
Melting Layer Criteria

• Continuous vertical 
measurements of 
hydrometeors melting

• Sampled during an ascent or 
descent

• Minimum hydrometeor 
concentration threshold of 
103 #/m4
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Penetration Type
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Ramp Spiral



Melting Layer Cases
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Melting Layer Cases

1. High Relative Humidity - OLYMPEX_Ram-Des_98RH

2. Saturated - OLYMPEX_Ram-Des_100RH

3. Enhanced Aggregation
• IMPACTS_Spi-Des_94RH
• MC3E_Ram-Asc_83RHa

4. Low Relative Humidity – GCPEX_Spi-Des_84RH

5. Isothermal Layer – GCPEX_Spi-Asc_100RH
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33 Total Cases 5 Case Types



High Relative Humidity

19OLYMPEX_Ram_Des_98RHa



High Relative Humidity
• Both exponential fit 

parameters lowest above 
melting layer.

• Both increase as melting 
begins and concentration 
of large particles 
decreases.

• Most significant changes 
near the melting layer top.

20OLYMPEX_Ram_Des_98RHa



Saturated Case

21OLYMPEX_Ram_Des_100RH



Saturated Case

22OLYMPEX_Ram_Des_100RH

• Both parameters smallest 
above melting layer.

• Both parameters slightly 
larger below the melting 
layer than within.

• Distinct spikes in 
parameters associated 
with increases of small 
hydrometeor 
concentration.



Significant Aggregation Cases

23IMPACTS_Spi_Des_94RHMC3E_Ram-Asc_83RHa



Low Relative Humidity

24GCPEX_Spi-Des_84RH



Low Relative Humidity

25GCPEX_Spi-Des_84RH



Quasi-isothermal Layer
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Results
• Concentration 

decreases
• More frequent 

with low relative 
humidity

• Area ratio increases

• Max diameter 
decreases

• Exponential Fit
• Slope parameter 

increases

N0 λ 27
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Conclusions
• An increase in area ratio over a depth 

indicates melting is occurring.

• Area ratio begins to increase below 0 
°C ice-bulb isotherm.
• Confirms Heymsfield et al. (2021).

• Concentration of both small and large 
hydrometeors decreases.

• Few cases have enhanced aggregation

• Only 2/33 cases have a quasi-
isothermal layer

N0 λ 29

Summary Table



Future Work
• How is the lapse rate impacted?

• How do radar reflectivity changes in the melting layer compare to the 
observed particle spectrum changes?
• How does this relate to the bright band?

• What happens to hydrometeors smaller than 500 µm?
• Newer probes with larger sample volume than 2D-S but higher 

resolution than HVPS3?
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QUESTIONS?



Ice-bulb Comparison
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Ice-bulb Temperature
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Ice-bulb Derivation

𝑒𝑠(𝑇) = 𝑒0 exp
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2D-S vs. HVPS3
• Zero counts in 2D-S
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Pixels Necessary for Area Ratio Analysis
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Melting Layer Cases
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Low (≤ 90%) RH High (> 90%) RH Saturated Total

Spiral 4 8 6 18

Ramp 5 9 1 15

Total 9 17 7 33



Liquid Water Content: 12 November 2015
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Liquid Water Content: 12 November 2015
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One Melting Layer Sampled Twice During MC3E
• Melting layer top 

around 3,750 m 

• Depths of 133 m 
(descent) and 123 m 
(ascent)

• RH of 83% and 79%

• 0 °C isotherm is 235 
m higher during the 
ascent
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Descent Ascent



IPHEX_Spi-Asc_100RH
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IPHEX_Ram-Asc_92RH
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OLYMPEX_Spi-Des_100RHa
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GCPEX_Ram-Des_71RH



IPHEX_Ram-Asc-92RH
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