Calibration Uncertainties in Cloud Condensation Nuclei Counters

University of North Dakota Kurt Hibert and David Delene

1

Motivation

- Cloud Condensation Nuclei (CCN) play a major role in cloud and precipitation formation
- CCN are an important subset of aersols that nucleate water vapor in supersaturations characteristic of the atmosphere (< 1.0 %)
- CCN measurements are used in weather modification and modeling research
- Valid CCN measurements with uncertainties help in comparing measurements between projects
 - Knowing uncertainties helps as CCN measurements are input into models

Objectives

- Understand the calibration uncertainties and effects on CCN measurements
- Quantify the pressure dependence is helpful in aircraft operations
- Apply these results to past weather modification experiments (POLCAST)

Droplet Measurement Technologies CCN Counter

- Widely used, commercially available
- Frequently used for weather modification research
 - Understanding it's uncertainties will aid in the comparability of measurements
- The DMT CCN counter is a dynamic vertical thermal gradient diffusion chamber
 - A temperature gradient is applied while flow is continuous through the droplet growth chamber
- The inner walls of the chamber are kept wet using an alumina bisque liner and temperatures are controlled at the top, middle, and bottom of the chamber
- Water vapor diffuses more quickly in air than heat and as both diffuse toward the center of the chamber, there is more water vapor than in thermodynamic equilibrium creating a supersaturation

Droplet Measurement Technologies CCN Counter

- The supersaturation at the centerline of the chamber depends on the temperature difference between the top and bottom of the chamber, pressure in the chamber, and flow rate
 - Supersaturation can be varied between 0.1 2.0 %
- The sheath to sample flow ratio determines how confined the sample stream is to the centerline
- The sample flow determines the volume where counted particles reside
- An optical particle counter at the bottom of the chamber detects and sizes the grown droplets

DMT CCN Counter Calibrations

- Three main calibrations
 - Pressure, flow rate, supersaturation
- Pressure calibration
 - Straightforward comparison of voltage to standard measured pressure
 - Important because pressure influences the supersaturation inside the instrument
- Flow rate Calibration
 - Voltage is related to measured flow rate using a standard flow meter
 - Determines accuracy of concentration measurement and constant supersaturation
- Supersaturation calibration requires a complex lab setup and complex processing

- Pressure Calibration changed by less than 1%
- Don't expect much change in pressure calibrations over time
 - Negligible uncertainty introduced through pressure calibration

Sheath Flow Calibration

- Uncertainty measurements taken 6 months after calibration
- With a setpoint of 455 ccm, the ten sample average of measured flow is 443.43 ccm
- 2.5 % error in sheath flow

Sample Flow Calibration

- Uncertainty measurements taken 6 months after calibration
- With a setpoint of 45 ccm, 10 sample average measured flow is 46.94 ccm
- 4.3 % error in sample flow

Lab Setup: Cloud Condensation Nuclei Counter Calibrations

- Generate aerosols of known size and chemical composition
- Introduce into the DMT CCN counter while holding its chamber temperature gradient constant
- CCN are counted while a calibration standard counts all particles simultaneously
- The ratio of CCN concentration to total particle counts is the activated ratio
- Selected sizes are introduced into the CCN counter at regular intervals yielding activated ratios between 0 and 100 percent

Activation size of 70.08 nm results in a calculated supersaturation of 0.256%

- The activation curve is made using a sigmoidal curve fitting routine to fit the data
- The same processing script determines the activation size based on the size at which the activation curve crosses the activation ratio
 - Normalization of ratio data to 1.0 does not significantly impact activation size calculation (< 0.5 %)
- Using kappa-Kohler theory, the critical supersaturation is calclulated
- Critical supersaturation is calculated at 5 different instrument temperature gradients
- Process is repeated three times at each of three pressures: 700, 840, and 980 mb

- Calculated supersaturation is plotted with its corresponding temperature gradient and fitted linearly
- The fit equation coefficients are used as the instrument's calibration coefficients

Supersaturation Uncertainties

• The relative deviation of supersaturation can be calculated at each temperature gradient to give the uncertainty in calculating supersaturation

- 0.1-0.3 % relative uncertainty

- The overall supersaturation calibration uncertainty is calculated from the relative error of the three calibrations at a given pressure
 - 2.3, 3.1, and 4.4 % uncertainty for 980, 840, and 700 mb calibrations respectively

- Observed average pressure dependence of 0.047 % supersaturation per 100 mb
 - Rose et al. (2008) found a pressure dependence of 0.037 % supersaturation per 100 mb at a temperature gradient of 5 K while this research found 0.039% per 100 mb at a temperature gradient of 6 K
- Slope increases 5.4 % per 100 mb decrease in pressure meaning pressure dependence is not constant
- Single supersaturation offset leads to a corresponding error in supersaturation percent between 1-5%

Uncertainty Effects on Concentration Measurements

Supersaturation Spectrum of Outdoor Air

- 2.3 percent uncertainty from the supersaturation calibration and 4.3 percent uncertainty in sample flow
- Based on the supersaturation spectrum with the ambient calibration and the uncertainties found, concentrations will be within 8.8 percent of the measured value
- Assuming the same supersaturation to concentration relationship, measured values will ¹⁵ be within 10.4 percent at 840 mb and within 13.0 percent at 700 mb

Comparison of Calibration Methodologies

- DMT performed a calibration on SN 062 June 2015
- UND calibrations were done approximately one year later
- Performance checks confirmed that all major leaks developed during shipping were fixed before UND calibrations begun

Supersaturation Calibrations at 840 mb

 UND calibrations are 42-45 % lower than DMT calibrations

Possible Differences in Calibration Methodology

- The assumptions made in Kohler theory calculations can dramatically alter calculated supersaturation
- Multiply charged particles can get through the Electrostatic Classifier and influence the activation curves
- Fitting methods other than a sigmoidal fit lead to large error in calculating activation size

 The calculated supersaturation using the DMT variation of Kohler theory is on average 3.3 % lower than when using κ-Kohler theory

June 2015 DMT Supersaturation Calibration

Temperature Gradient of 3 degrees C at 840 mb

- Plateau around 30 % indicates that 30 % of particles are multiply charged
 - Research indicates plateau heights greater than 10% have a significant influence on calculated supersaturation
- Concentrations of multiply charged particles are not constant over the size range making corrections difficult
 - Knowledge of the size distribution is necessary to correct the data
- A sigmoidal fit is necessary to determine the activation size, not linear interpolation
 - Linear interpolation disregards the ends of the activation curve

Temperature Gradient of 3 degrees C at 840 mb

- Plateau heights must remain below 10% if no corrections are made
- Kohler theory variations can significantly differ so it is important to quantify this when doing comparisons
- A sigmoidal fit, rather than a linear interpolation is necessary for accurately and objectively finding the activation size

Conclusions

- Calibrations should be done under the environmental conditions the CCN counter will be operating under for the most accurate measurements due to a changing calibration slope with pressure
- The uncertainty in the DMT's concentration measurement using this calibration methodology is 8.8, 10.4, and 13.0 % for 980, 840, and 700 mb respectively
- Comparisons between the calibrations done at UND and DMT show 42-45 % lower supersaturations for the same temperature gradient using the UND methodology

Future Work

- Publish results
- Apply uncertainties to POLCAST data
- Explore the supersaturation dependence on temperature and flow rate

References

Petters, M. D., and Kreidenweis, S. M., 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. *Atmos. Chem. Phys.*, **7**, 1961-1971, doi:10.5194/acp-7-1961-2007.

Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U., 2008: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, *Atmos. Chem. Phys.*, **8**, 1153-1179, doi:10.5194/acp-8-1153-2008.

Droplet Measurement Technologies, Inc., 2005: Cloud Condensation Nuclei Counter Operator Manual. Revision F, 86 pp.

Acknowledgements

Funded in part by Research North Dakota

Meeting attendance sponsored by Weather Modification International

Importance of Neutralization

Size Selection of 15 nm Without Neutralizer

- SMPS scan of DMA selecting 15 nm particles without a neutralizer installed.
- Each peak corresponds to a distinct charge state. 15 nm is +1, 21 nm is +2, 26 nm is +3, and so on.
- 5 distinct peaks representing 5 charge states. This indicates the charge distribution of generated particles is much wider than previously thought.
- 51.6 % of all particles in this scan are not within 2.5 nm of 15 nm.
- Electrostatic Classifier manual notes that aerosols can accumulate inside the neutralizer. If it is not older 25 than Kr-85 half-life of 10.7 years, then accumulation is a possible reason the neutralizer may lose effectiveness (thin layer can block alpha radiation).

Kappa-Kohler Theory

- The equation developed by Petters and Kreidenweis (2007) is: $S(D) = \frac{D^3 - D_d^3}{D^3 - D_d^3(1 - \kappa)} \exp\left(\frac{4\sigma_{s/a}M_w}{RT\rho_w D}\right)$
 - Where kappa can be defined as:

$$\kappa = \frac{4 A^3}{27 D_d^3 \ln^2(S_c)}$$

- And A is defined as:

$$A = \frac{4 \,\sigma_{s/a} M_w}{RT \,\rho_w}$$

- Again, ρ_w is the density of water, M_w is the molecular weight of water, σ_{s/a} is the surface tension of the solution/air interface, R is the universal gas constant, T is temperature, and D is the diameter of the droplet. D_d is dry particle diameter and S_c is the critical supersaturation corresponding to the dry diameter
- Kappa for ammonium sulfate is 0.61