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Motivation

● Cloud Condensation Nuclei (CCN) play a major role in cloud 
and precipitation formation 

● CCN are an important subset of aersols that nucleate water 
vapor in supersaturations characteristic of the atmosphere (< 
1.0 %)

● CCN measurements are used in weather modification and 
modeling research

● Valid CCN measurements with uncertainties help in 
comparing measurements between projects
– Knowing uncertainties helps as CCN measurements are input into 

models
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Objectives

● Understand the 
calibration uncertainties 
and effects on CCN 
measurements

● Quantify the pressure 
dependence is helpful in 
aircraft operations

● Apply these results to 
past weather modification 
experiments (POLCAST)  
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Droplet Measurement Technologies 
CCN Counter

● Widely used, commercially available
● Frequently used for weather modification 

research
– Understanding it's uncertainties will aid in the 

comparability of measurements

● The DMT CCN counter is a dynamic 
vertical thermal gradient diffusion 
chamber
– A temperature gradient is applied while flow 

is continuous through the droplet growth 
chamber

● The inner walls of the chamber are kept 
wet using an alumina bisque liner and 
temperatures are controlled at  the top, 
middle, and bottom of the chamber 

● Water vapor diffuses more quickly in air 
than heat and as both diffuse toward the 
center of the chamber, there is more 
water vapor than in thermodynamic 
equilibrium creating a supersaturation
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Droplet Measurement Technologies 
CCN Counter

● The supersaturation at the centerline of 
the chamber depends on the temperature 
difference between the top and bottom of 
the chamber, pressure in the chamber, 
and flow rate
– Supersaturation can be varied between 0.1 – 

2.0 % 

● The sheath to sample flow ratio 
determines how confined the sample 
stream is to the centerline

● The sample flow determines the volume 
where counted particles reside

● An optical particle counter at the bottom of 
the chamber detects and sizes the grown 
droplets
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DMT CCN Counter Calibrations

● Three main calibrations
– Pressure, flow rate, supersaturation

● Pressure calibration
– Straightforward comparison of voltage to standard measured pressure

– Important because pressure influences the supersaturation inside the 
instrument

● Flow rate Calibration
– Voltage is related to measured flow rate using a standard flow meter

– Determines accuracy of concentration measurement and constant 
supersaturation

● Supersaturation calibration requires a complex lab setup and complex 
processing
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● Pressure Calibration changed by less than 1%
● Don't expect much change in pressure calibrations over time

– Negligible uncertainty introduced through pressure calibration
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● Uncertainty measurements taken 6 months after calibration
●  With a setpoint of 455 ccm, the ten sample average of 

measured flow is 443.43 ccm
● 2.5 % error in sheath flow
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● Uncertainty measurements taken 6 months after calibration
● With a setpoint of 45 ccm, 10 sample average measured flow 

is 46.94 ccm
● 4.3 % error in sample flow
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● Generate aerosols of 
known size and chemical 
composition

● Introduce into the DMT 
CCN counter while holding 
its chamber temperature 
gradient constant

● CCN are counted while a 
calibration standard counts 
all particles simultaneously

● The ratio of CCN 
concentration to total 
particle counts is the 
activated ratio

● Selected sizes are 
introduced into the CCN 
counter at regular intervals 
yielding activated ratios 
between 0 and 100 percent
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Activation size of 70.08 nm results in 
a calculated supersaturation of 

0.256%

● The activation curve is made 
using a sigmoidal curve fitting 
routine to fit the data

● The same processing script 
determines the activation size 
based on the size at which the 
activation curve crosses the 
activation ratio

– Normalization of ratio data 
to 1.0 does not significantly 
impact activation size 
calculation (< 0.5 %)

● Using kappa-Kohler theory, the 
critical supersaturation is 
calclulated

● Critical supersaturation is 
calculated at 5 different 
instrument temperature 
gradients

● Process is repeated three 
times at each of three 
pressures: 700, 840, and 980 
mb
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● Calculated supersaturation is plotted with its corresponding temperature 
gradient and fitted linearly

● The fit equation coefficients are used as the instrument's calibration coefficients
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 Supersaturation Uncertainties

● The relative deviation of supersaturation can be 
calculated at each temperature gradient to give 
the uncertainty in calculating supersaturation
– 0.1-0.3 % relative uncertainty

● The overall supersaturation calibration 
uncertainty is calculated from the relative error 
of the three calibrations at a given pressure
– 2.3, 3.1, and 4.4 % uncertainty for 980, 840, and 

700 mb calibrations respectively
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● Observed average pressure dependence of 0.047 % supersaturation per 100 mb

– Rose et al. (2008) found a pressure dependence of 0.037 % supersaturation per 100 mb at 
a temperature gradient of 5 K while this research found 0.039% per 100 mb at a 
temperature gradient of 6 K

● Slope increases 5.4 % per 100 mb decrease in pressure meaning pressure dependence is not 
constant

● Single supersaturation offset leads to a corresponding error in supersaturation percent 
between 1-5%
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Uncertainty Effects on 
Concentration Measurements

● 2.3 percent uncertainty from the supersaturation calibration and 4.3 percent uncertainty 
in sample flow 

● Based on the supersaturation spectrum with the ambient calibration and the uncertainties 
found, concentrations will be within 8.8 percent of the measured value

●  Assuming the same supersaturation to concentration relationship, measured values will 
be within 10.4 percent at 840 mb and within 13.0 percent at 700 mb
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Comparison of Calibration 
Methodologies

● DMT performed a calibration on SN 062 June 
2015

● UND calibrations were done approximately one 
year later

● Performance checks confirmed that all major 
leaks developed during shipping were fixed 
before UND calibrations begun
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● UND calibrations are 42-45 % lower than DMT 
calibrations
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Possible Differences in Calibration 
Methodology

● The assumptions made in Kohler theory 
calculations can dramatically alter calculated 
supersaturation

● Multiply charged particles can get through the 
Electrostatic Classifier and influence the 
activation curves

● Fitting methods other than a sigmoidal fit lead 
to large error in calculating activation size 
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● The calculated supersaturation using the DMT 
variation of Kohler theory is on average 3.3 % 
lower than when using κ-Kohler theory   
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● Plateau around 30 % indicates that 30 % of particles are multiply charged
– Research indicates plateau heights greater than 10% have a significant influence on calculated supersaturation

● Concentrations of multiply charged particles are not constant over the size range making corrections 
difficult
– Knowledge of the size distribution is necessary to correct the data

● A sigmoidal fit is necessary to determine the activation size, not linear interpolation
– Linear interpolation disregards the ends of the activation curve

June 2015 DMT Supersaturation Calibration
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● Plateau heights must remain 
below 10% if no corrections 
are made

● Kohler theory variations can 
significantly differ so it is 
important to quantify this when 
doing comparisons

● A sigmoidal fit, rather than a 
linear interpolation is 
necessary for accurately and 
objectively finding the 
activation size 
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Conclusions

● Calibrations should be done under the environmental 
conditions the CCN counter will be operating under for 
the most accurate measurements due to a changing 
calibration slope with pressure

● The uncertainty in the DMT's concentration 
measurement using this calibration methodology is 8.8, 
10.4, and 13.0 % for 980, 840, and 700 mb respectively

● Comparisons between the calibrations done at UND and 
DMT show 42-45 % lower supersaturations for the same 
temperature gradient using the UND methodology
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Future Work

● Publish results
● Apply uncertainties to POLCAST data
● Explore the supersaturation dependence on 

temperature and flow rate
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Importance of Neutralization

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Size Selection of 15 nm Without Neutralizer

Particle Diameter (nm)

Co
un

ts

● SMPS scan of DMA selecting 15 nm particles without a neutralizer installed.
● Each peak corresponds to a distinct charge state. 15 nm is +1, 21 nm is +2, 26 nm is +3, and so on.
● 5 distinct peaks representing 5 charge states. This indicates the charge distribution of generated particles 

is much wider than previously thought.
● 51.6 % of all particles in this scan are not within 2.5 nm of 15 nm.
● Electrostatic Classifier manual notes that aerosols can accumulate inside the neutralizer.  If it is not older 

than Kr-85 half-life of 10.7 years, then accumulation is a possible reason the neutralizer may lose 
effectiveness (thin layer can block alpha radiation). 
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Kappa-Kohler Theory

● The equation developed by Petters and Kreidenweis 
(2007) is:

– Where kappa can be defined as:

– And A is defined as:

● Again, ρw is the density of water, Mw is the molecular weight of 
water, σs/a is the surface tension of the solution/air interface, R is 
the universal gas constant, T is temperature, and D is the diameter 
of the droplet. Dd is dry particle diameter and Sc is the critical 
supersaturation corresponding to the dry diameter

● Kappa for ammonium sulfate is 0.61 
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