Statistical Analysis of the Polarimetric Cloud Analysis and Seeding Test (POLCAST) Field Projects

Jamie Ekness

Importance of North Dakota Agriculture

- Agriculture is the number one industry of the state, bringing in more than \$4.1 billion annually. (North Dakota Department of Agriculture, 2010)
- North Dakota farmers are responsible for >50 % of many crops produced in the United States. (North Dakota Department of Agriculture, 2010)

Important North Dakota Crops

Crops	% of U.S. Production
Flax	96%
Canola	90%
Durum wheat	68%
Pinto beans	65%
Dry edible peas	64%
Navy beans	46%
Spring wheat	45%
All sunflowers	44%
Confectionary sunflowers	42%

Economic Impact of Drought or Hail

- Results in loss of income/jobs for North Dakota residents.
- Increases consumer cost when crop loss occurs.
- The 2002 drought resulted in \$223 million in crop damages. (NCSL 2008)
- The 2006 drought resulted in \$425 million in crop damages. (NCSL 2008)

Objectives

Conduct a statistical analysis of the POLCAST randomized seeding field projects in North Dakota.

- Evaluate important environmental factors measured during POLCAST to ensure seed and non-seed cases are from the same population.
- Determine the ratio of radar derived rain rate and rain amount from seeded cases to non-seeded cases.
- Calculate the number of cases required to obtain a statistically significant result (p<0.05).

Current Seeding in North Dakota

- Silver Iodide (AgI) seeding has been used since 1950's.
- Operational seeding is conducted in 6 counties in western North Dakota.
- Hygroscopic seeding has not been tested in North Dakota.

Types of Operational Cloud Seeding

Ejectable

Agl Generator

Burn-in-Place

* 2016 North Dakota Cloud Modification Final Report

Agl Seeding with Ejectable Flares

CaCl₂ Hygroscopic Burn-In-Place

- The sizes of the aerosols, on the order of 5 μm diameter, are the proper size to start the rain process.
- Conceptual model:
 - The addition of hygroscopic particles will <u>enhance the</u> <u>collision and coalescence</u> in clouds with a base above freezing and <u>produce precipitation earlier</u> than naturally occurring.
 - Hygroscopic seeding will cause clouds that would not naturally rain to rain or clouds that would rain to rain more. (Silverman and Sukarnjanaset 2000)

Applications:

 Rain enhancement by increasing the collision and coalescence process within clouds.

Hygroscopic Seeding with Burn-In-Place Flares

Hygroscopic Seeding Projects Around the World

South Africa(1991/92 - 1997)

- Study began after measuring changes in cloud microphysics downwind of a Kraft Paper Mill. (Mather et al. 1997)
- Mexico(1997-1998)
 - Study based on findings of South Africa.
 - Seeded clouds found to last longer than non-seeded. (Silverman 2003)

Thailand (1995-1998)

- Best effects were seen in clouds seeded before natural precipitation formation takes place – from model runs.
- Experimental parameters were chosen to: Maximize the seeding signal and minimize the natural variability.
- The effectiveness of the seeding could be evaluated with a relatively small sample size.
- Provided statistically significant evidence of hygroscopic seeding. (Silverman and Sukarnjanaset 2000)

POLarimetric Cloud Analysis and Seeding Test

- The first POLCAST project in 2006 had the main objective to determine if a radar signature could be seen in clouds seeded with hygroscopic flares.
- Projects in 2008, 2010, and 2012 included random seeding/sampling cloud targets.
- Random seed/sample convective cloud targets within 100 km of the UND radar.
- Cloud base measurements were taken by instruments on the aircraft in seed and non-seed cases.

NorthPol C-Band Radar:

Reflector Type	Parabolic Dish	
Dish Size	3.66 m	A CALL
Wavelength	5.4 cm	
Frequency	5600 MHz	
Minimum Detectable Signal	-106.5 dB	+

POLCAST NorthPol Specifications

Surveillance Type	Scan Type	Parameters
Routine	Full-Volume Mode	16 tilts with max elevation of ~22° to a max range of 150 km. Spatial resolution: 250 m Temporal Resolution 10 min
Special: Case has been called	Sector-Scan Mode (1-3 min) centered on the case	High vertical resolution and lowest elevation tilts (elevation ~5°) ensure adequate sampling at low levels and provide high temporal resolution to capture the temporal evolution of the storms

North Dakota convective cloud targets. 2008 Seed Non-Seed 2010 Seed Non-Seed 2012 Seed Non-Seed

image La

Fargo

POLCAST Cases

Instruments Used During POLCAST

University of Wyoming Cloud Condensation Nuclei Counter (UWyo CCNC) Rosemount Aircraft Temperature Sensor Flare Rack with ICE Hygroscopic Flares Aventech Aircraft Integrated Meteorological Measurement

System (AIMMS)*

*The AIMMS was only used during the last 5 flights of 2012

Environmental Factors: 2008, 2010, and 2012

Environmental Factors: 2008, 2010, and 2012

Measurement	Average Value: Seed Days	St Dev. Seed Days	Average Value: Non- Seed Days	St Dev. Non-Seed Days	Percent Accuracy
Cloud Base Temperature	11.6 °C	\pm 0.82 °C	12 °C	\pm 0.70 °C	7.8 %
Cloud Base Pressure Altitude	1673 m	\pm 95 m	1556 m	\pm 80 m	7.3 %
Cloud Base CCNC	1271 #/cm ³	\pm 340 #/cm 3	1381 #/cm ³	\pm 260 #/cm ³	8.3 %

- To show a comparison of cloud base environmental measurements between seeded and non-seeded cases.
 - Cloud base temperature
 - Cloud base altitude
 - Cloud base CCN concentration

$$U = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - \sum_{i=n_1+1}^{n_2} R_i$$

U=Mann-Whitney U test n_1 = Sample size one (seed) n_2 = Sample size two (non-seed) R_i = Rank of the sample size

Null hypothesis = distributions of both the seed and non-seed cases are identical.

n1\ ⁿ²	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2		ا ما ۵			/+	-	ilad)	0	0	0	1	1	1	1	1	2	2	2	2
3		Albi	1a =	0.05	(tw	0-ta	nea)	2	3	3	4	- 4	5	5	6	6	7	7	8
4			0	1	2	3	- 4	4	5	6	7	8	9	10	11	11	12	13	14
5		0	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
6		1	2	3	5	6	7	10	11	13	14	16	17	19	21	22	- 24	25	27
7		1	3	5	6	8	10	12	- 14	16	18	20	22	- 24	26	28	30	32	34
8	0	2	4	6	7	10	13	15	17	19	22	- 24	26	29	31	34	36	38	41
9	0	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
10	0	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
11	0	3	6	9	13	16	19	23	26	30	33	37	40	- 44	47	51	55	58	62
12	1	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
13	1	4	8	12	16	20	24	28	33	37	41	45	50	- 54	59	63	67	72	76
14	1	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	83
15	1	5	10	14	19	24	29	34	39	- 44	49	- 54	59	64	70	75	80	85	90
16	1	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
17	2	6	11	17	22	28	- 34	39	45	51	57	63	67	75	81	87	93	- 99	105
18	2	7	12	18	- 24	30	36	42	48	55	61	67	- 74	80	86	93	- 99	106	112
19	2	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119
20	2	8	13	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127

Alpha = 0.05 (two-tailed) **Test Statistic** Accept **Property** hypothesis? (U) Mean Cloud Base 154.5 **CCN** Concentration Mean Cloud Base 153.5 Temperature Mean Cloud Base 158.5 Altitude

If U > 106 do not reject the null hypothesis that properties are randomly distributed.

Cloud Base Cloud Condensation Nuclei Concentration			Cloud Bas	Cloud Base Temperature			Cloud Base Cloud Pressure Altitude			
	Non-	Seed		Non-	Seed		Non-	Seed		
	Seed	Cases		Seed	Cases		Seed	Cases		
	Cases			Cases			Cases			
Number of Cases	19	18	Number of Cases	19	18	Number of Cases	19	18		
Mean Rank	19.87	18.08	Mean Rank	18.08	19.97	Mean Rank	19.66	18.31		
Sum of Ranks	377.50	325.50	Sum of Ranks	343.50	359.50	Sum of Ranks	373.5	329.5		
Mann- Whitney Test Statistic	154.5		Mann- Whitney Test Statistic	153.5		Mann- Whitney Test Statistic	158	8.5		
Significance	0.6	521	Significance	0.5	99	Significance	.707			

 Cloud base environmental factors are evenly distributed between seed and non-seed cases.

Thunderstorm Identification Tracking And Nowcasting

 Used to track clouds (cases) seeded or sampled by aircraft during POLCAST.

Flight Track on June 21, 2008

June 13, 2008 POLCAST Non-Seed Case

POLCAST2 Case Examples

POLCAST3 Case Examples

POLCAST4 Case Examples

Single Ratio and Double Ratio

 Used to show a percent increase of seeded vs. nonseeded cases of chosen variables.

Single Ratio = $\frac{SeedX}{NonSeedX}$

 $\mathbf{X} = \mathbf{S}$ ample used to compare case measurements

Double Ratio =
$$\frac{(\frac{Seed X}{NonSeed X})}{(\frac{Seed Y}{NonSeed Y})}$$

 $\mathbf{X} =$ Sum of 30 min-60 min total rain amount past seeding/sampling $\mathbf{Y} =$ Sum of 10 min-20 min total rain amount past seeding/sampling

Single Ratio Results : Reflectivity

Reflectivity (dBZ)							
SR = Seed Avg/ Non-Seed Avg							
10 minutes	1.369						
20 minutes	1.266						
30 minutes	1.302						
40 minutes	1.444						
50 minutes	1.000						
60 minutes	1.245						

Radar Derived Rain Rate

Radar Derived Rain Amount

POLCAST2, 3, 4									
	Seed	Seed	Non-Seed	Non-	SR = Seed	SR = Seed			
	(Average)	(Total)	(Average)	Seed	Tot/ Non-	Avg/Non-			
				(Total)	Seed Tot	Seed Avg			
Rain	0.3 mm	4.7 mm	0.2 mm	2.8 mm	1.7 mm	1.5 mm			
Amount									

Lifetime of Clouds

Percent of cases lasting 20 - 60 minutes past seeding or sampling

	Lasted 20	lasted 30	lasted 40	lasted 50	lasted 60+
	minutes	minutes	minutes	minutes	minutes
Seed Cases	100 %	88 %	82 %	76 %	41 %
Non-seed	88 %	62 %	56 %	31 %	25 %
Cases					

Effectiveness of Hygroscopic Seeding in North Dakota

33 Cases

Double Ratio Rain Amount	P-Value	Single Ratio Average Rain Amount	Seeded Cloud Lifetime 60+ Minutes
1.85	0.31	1.5	41 %

Bootstrapping Method:

- Statistical method of resampling with replacement to take values from an original data set and create data sets of varied numbers from the original data.
- Values from the original data set could be included once, multiple times, or not at all in the created data sets.

Bootstrapping Method

POLCAST2,3,4

- Bootstrap on the original data set of **33 radar cases**.
- Iterate through the original data set to create 100, 1,000, and 10,000 data sets of 66, 132, and 264 cases.

POLCAST4

- Bootstrap on the original data set of **15 radar cases**.
- Iterate through the original data set to create 100, 1,000, and 10,000 data sets of 30, 60, and 120 cases.

Bootstrapped POLCAST Data Set

10,000 Iterations

	66 Cases	132 Cases	264 Cases
Mean Double Ratio	1.97	1.91	1.88
Standard Deviation	0.81	0.54	0.36
Z-Score	1.20	1.70	2.44
P-Value (Right Tailed)	0.115	0.045	0.007

Bootstrapped 2012 POLCAST Data Set

10,000 iterations								
	30 Cases	60 Cases	120 Cases					
Mean Double Ratio	15.07	15.26	13.89					
Standard Deviation	6.50	3.98	2.51					
Z-Score	2.16	3.59	5.14					
P-Value (Right Tailed)	0.0152	0.0002	< 0.00001					

North Dakota Atmospheric Weather Network (NDAWN) Stations

Minnesota:

- Eldred, Perley
- North Dakota:

Cavalier, Forest River, Grand Forks, Mayville, St. Thomas

Annual Percentage of Rainfall

Station and Years of Data	June and July
Cavalier, ND (1993-2015)	39 %
Mayville, ND (1995-2015)	36 %
Grand Forks, ND (1990-2015)	39 %
St. Thomas, ND (1994-2015)	39 %
Forest River, ND (1991-2015)	39 %
Perley, MN (1995-2015)	38 %
Eldred, MN (1995-2015)	38 %

NDAWN: Total Rain Amount in June and July

Grand Forks

Rain amount from the Grand Forks NDAWN station to show that the years chosen as seeded were not unusual for the area.

NDAWN: Total Rain Amount in June and July

June: July Annual

Rain amount from the Perley NDAWN station to show that the years chosen as seeded were not unusual for the area.

Conclusions

- Environmental factors are distributed in seed and non-seed cases.
- Seeded clouds produced more precipitation than non-seeded clouds.
 - Single ratio = 1.7 and Double Ratio = 1.85.
- Statistical significance was calculated for >132 cases.
- Seeded clouds had longer lifetimes than non-seeded clouds.
 - 41 % of seeded clouds lasting 60+ minutes compared to 25 % of non-seeded clouds.
- There was an increase of rain rate in seeded clouds compared to non-seeded clouds (from TITAN).
- Rainfall in eastern North Dakota was typical during June and July of 2008, 2010, and 2012 when POLCAST took place.

Broader Impacts and Future Work

- Use the Poission Counting Statistic to determine the p-value uncertainty for the number of cases provided.
- Use data, such as environmental factors, from POLCAST to input into a model for simulations of cloud seeding cases.
- Analyze TITAN cells instead of an area of influence.

References

Aventech, 2017: AIMMS-20. http://aventech.com/products/aimms20.html.

Beazell, K. A., 2016: Grown Locally, Praised Globally in North Dakota. http://www.farmflavor.com/north-dakota/north-dakota-agribusiness/grown-locally-praised-globally-north-dakota/ (Accessed March 20, 2017).

Delene, D., C. Grainger, P. Kucera, D. Langerud, M. Ham, R. Mitchell, and K. Kruse, 2011: The Second Polarimetric Cloud Analysis and Seeding Test. *J. Weather Modif.*, **43**, 14–28.

Mather, G. K., D. E. Terblanche, F. E. Steffens, and L. Fletcher, 1997: Results of the South African Cloud-Seeding Experiments Using Hygroscopic Flares. *J. Appl. Meteorol.*, **36**, 1433–1447, doi:10.1175/1520-0450(1997)036<1433:ROTSAC>2.0.CO;2.

National Conference of State Legislatures, 2008: North Dakota: Assessing the Costs of Climate Change. http://www.ncsl.org/print/environ/ClimateChangeND.pdf.

North Dakota Department of Agriculture, 2010: Major Crops and Livestock of North dakota. https://www.nd.gov/ndda/files/resource/agbrochure2010.pdf (Accessed December 1, 2016).

North Dakota Studies, 2011: North Dakota Leads the Nation. http://www.ndstudies.org/resources/maps/ag/ndleads.html. Schoonjans, F., Test for one proportion calculator. *MedCalc*,. https://www.medcalc.org/calc/test_one_proportion.php (Accessed July 13, 2017).

Silverman, B. A., 2003: A Critical Assessment of Hygroscopic Seeding of Convective Clouds for Rainfall Enhancement. *Bull. Am. Meteorol. Soc.*, **84**, 1219–1230, doi:10.1175/BAMS-84-9-1219.

——, and W. Sukarnjanaset, 2000: Results of the Thailand Warm-Cloud Hygroscopic Particle Seeding Experiment. *J. Appl. Meteorol.*, **39**, 1160–1175, doi:10.1175/1520-0450(2000)039<1160:ROTTWC>2.0.CO;2.

Acknowledgements

Atmospheric Science Department

Committee:

- Dr. Dave Delene
- Leon Osborne
- Dr. Gerry Dunnigan

Friends and Family

Silver Iodide (AgI) Flares used in the NDCMP

	Agl Ejectable and Burn-in-Place Flares
Advantages	 Wide temperature range spectrum for nucleation 63 % of nucleation within the first minute 90 % of nucleation in less than 2 minutes

Statistics on 2008, 2010, and 2012 POLCAST Bootstrapped Data Sets

$$z = rac{p - p_{exp}}{se(p)}$$

$$se(p) = \sqrt{rac{p_{exp}(1-p_{exp})}{n}}$$

100 iterations				
Cases	66	132	264	528
Mean Double Ratio	1.9243	1.9576	1.8927	1.8420
Standard Deviation	0.7798	0.4838	0.3368	0.2677
Z-Score	1.1853	1.9793	2.6509	3.1452
Test for 1 proportion	.4506	.2688	.1449	.0259

1,000 iterations				
Cases	66	132	264	528
Mean Double Ratio	1.9894	1.9003	1.8710	1.8654
Standard Deviation	0.788	0.4938	0.3513	1.8654
Z-Score	1.256	1.8233	2.4796	3.4901
Test for 1 Proportion	.4194	.2985	.1549	.0229

10,000 iterations				
Cases	66	132	264	528
Mean Double Ratio	1.9679	1.9103	1.8814	1.8677
Standard Deviation	0.8070	0.5362	0.3609	0.2536
Z-Score	1.1993	1.6975	2.4421	3.4214
Test for 1 Proportion	.2147	.1466	.0751	.0023

Equations for the test for 1 proportion

Environmental Factors: 2008, 2010, and 2012

TITAN Scripts for Analysis of the POLCAST Field Projects

Initial Analysis

Analysis of POLCAST with TITAN:

Calculate rain rate using Reflectivity

Z-R Relationship Equation used for Summer Deep Convection $Z = 300 * R^{1.4}$

Z = reflectivity (mm⁶/m³) R = Rain rate in mm/hr

Cavalier

Eldred

Forest River

St. Thomas

Cloud Base Temperature

Cloud Base CCN

67

Cloud Base Altitude

