
SOFTWARE ARTICLE

Airborne data processing and analysis software package

David J. Delene

Received: 28 December 2009 /Accepted: 23 July 2010
Springer-Verlag 2010

Abstract The practice of conducting quality control and
quality assurance in the construction of data sets is often an
overlooked and underestimated task of many research
projects in the Earth Sciences. The development of software
to effectively process and quickly analyze measurements is
a critical aspect of a research project. An evolutionary
approach has been used at the University of North Dakota
to develop and implement software to process and analyze
airborne measurements. Development over the past eight
years has resulted in a collection of software named the
Airborne Data Processing and Analysis (ADPAA) package
which has been published as an open source project on
Source Forge. The ADPAA package is intended to fully
automate data processing while incorporating the concept
of missing value codes and levels of data processing. At
each data level, ADPAA utilizes a standard ASCII file
format to store measurements from individual instruments
into separate files. After all data levels have been
processed, a summary file containing parameters of
scientific interest for the field project is created for each
aircraft flight. All project information is organized into a
standard directory structure. ADPAA contains several tools
that facilitate quality control procedures conducted on
instruments during field projects and laboratory testing.
Each quality control procedure is designed to ensure proper
instrument performance and hence the validity of the
instrument’s measurement. Data processing by ADPAA

allows edit files to be created that are automatically used to
insert missing value codes into a time period that had
instrument problems. The creation of edit files is typically
done after the completion of a field project when scientists
are performing quality assurance of the data set. Since data
processing is automatic, preliminary data can be created
and analyzed within hours of an aircraft flight and a
complete field project data set can be reprocessed many
times during the quality assurance process. Once a final
data set has been created, ADPAA provides several tools
for visualization and analysis. In addition to aircraft data,
ADPAA can be used on any data set that is based on time
series measurements. The concepts illustrated by ADPAA
and components of ADPAA, such as the Cplot visualization
tool, are applicable to areas of Earth Science that work with
time series measurements.

Keywords Time series measurement .

Open source scientific software . Airborne measurements .

Research aircraft

Introduction

With current electronic instruments and computer technol-
ogy, the amount of recorded observations available in Earth
Science fields, such as Atmospheric Science, is enormous.
Recorded observations are generally referred to as data,
which by itself does not result in scientific progress but has
to be analyzed to extract information and scientific
understanding. Pinch (1985) proposed the concept of
‘externalization of observation’ to point out how a long
chain of interpretations are used when reporting on modern
scientific observations. In this respect, modern airborne
observations made in the atmospheric sciences are no

Communicated by: H.A. Babaie

D. J. Delene (*)
Department of Atmospheric Sciences,
University of North Dakota,
Clifford Hall 420, 4149 University Avenue,
Grand Forks, ND 58202-9006, USA
e-mail: delene@aero.und.edu

Earth Sci Inform
DOI 10.1007/s12145-010-0061-4

different than observations of solar neutrinos made in
astronomy. Both types of experiential observations do not
depend much on sense perceptions, but rather on the
reliability of the practices and assumptions that went into
the observation process. What is important is not what the
experimenter ‘saw’ but rather how carefully the practices
were followed and how good the software programs were
written. In this paper, I report on the current practices
followed, and software used, when constructing airborne
data sets in the Department of Atmospheric Sciences at the
University of North Dakota. These practices and the
software tools are similar to the Federal Reference Method
for PM2.5 aerosol sampling used by the US Environmental
Protection Agency (Noble et al. 2001), in that they both
describe practices that need to be conducted and tools used
when making measurements that allow for comparisons
between data sets. In the case of the airborne measurement
described here, the practices and tools extend be on
instrumentation to include software programs and data
processing methods.

The University of North Dakota has owned and operated
a research aircraft since the mid 1970s which has been used
to make airborne measurements in many government
funded field projects and privately sponsored programs.
Measurements from the University of North Dakota’s
Citation Research Aircraft has resulted in many scientific
publications (e.g. Prenni et al. 2007; Sukovich et al. 2009)
and contributed to the development of airborne systems
such as the Tropospheric Airborne Meteorological Data and
Reporting (TAMDAR) system (Murray et al. 2005).
Recently, a new Cessna Citation II jet aircraft has been
purchased and modified to carry instruments to perform
airborne research. All instruments provide some type of
measurement that needs to be recorded for further scientific
analysis. Most modern instruments provide either an on-
board data recording method or stand alone data recording
software. On an observational platform such as an aircraft,
it is desirable to have a central system that acquires and
records all measurement in real time. A single central data
recording system ensures that all measurements are time
synced and that only one data file needs to be archived for
each aircraft flight.

Central aircraft data acquisition systems are commer-
cially available, or can be custom made. Custom made
aircraft acquisition systems have the disadvantage of
typically being poorly documented and only a small group
of people, sometimes only one person, understands how to
configure the system. Commercial systems vendors, on the
other hand, can spread the development and documentation
cost across several research groups and hence provides
better documentation and more features at lower cost
relative to one-of-a-kind custom systems.

The University of North Dakota owns and operates the
Science Engineering Associates, Inc. model M300 Data
Acquisition System (M300) for acquiring and recording
airborne measurements (Science Engineering Associates
2009). The M300 (Fig. 1) is built on the QNX real-time
operating system and is capable of synchronous and
asynchronous data acquisition. The system is configurable
via a graphical interface with setup information saved in
editable tables. The M300 has real-time data processing
functionality that is utilized to display measurements to on
board personnel and for data down linking.

A software environment for post-processing data
recorded by a data acquisition system, such as the M300,
should have the following characteristics:

& A programming environment that enables rapid soft-
ware development;

& A flexible, non-proprietary software environment;
& A robust environment for testing processing software;
& A modular data processing environment;
& The ability to use open-source code;
& A method to simply and completely automate data

reprocessing; and
& The ability to work with a complete flight data set at

one time so measurements at a future point in time can
be used in a data processing algorithm.

While there has been a lot of progress in instrumentation
and computer hardware used in Earth Science research over
the past several decades, it is only recently that software to
process and analyze the vast amount of data recorded by
data acquisition systems from many different types of
instruments has been developed. The necessity to work

Fig. 1 Science Engineering
Associates, Inc. model M300
Data Acquisition System used
for aircraft field projects at the
University of North Dakota

Earth Sci Inform

with data from many different instruments and the lack of
robust software tools has lead scientists to develop their
own software tool sets. At the University of North
Dakota, a modern post-processing method that begins
with the binary data file created by the M300 data
acquisition system was started from scratch in 2002 since
no software environment existed with the characteristics
listed above. Previous to 2002, aircraft data was post-
processed using a single large FORTRAN module. The
FORTRAN module was time consuming to modify,
difficult to understand, and very difficult for multiple
developers to work on. Another alternative processing
method is real-time data processing within the data
acquisition system itself. This type of data processing
has the following short comings:

& Data acquisition systems are a difficult and time
consuming programming environment.

& Commercially available data acquisition systems are
proprietary development environments that do not use
open source software.

& There is a limited ability to test processing software
since data acquisition systems are specialized computer
systems with limited availability.

& Data acquisition systems are not modular data process-
ing environments.

& Reprocessing of data using a data acquisition system is
difficult to automate.

& There is absolutely no way of using measurements at a
future point in time in a data processing algorithm when
processing data in real time.

With the realization that no truly similar software
environment existed (Holzwarth et al. 2010) and to
facilitate future development outside the airborne research
community, an open source project, Airborne Data Process-
ing and Analysis (ADPAA), was started on 8 November
2008 (Source Forge 2009). Using open source software
allows others to examine the processing methodology
implementation, to facilitate learning of software develop-
ment techniques, and to collaborate closely with other
scientists on processing algorithm development, and is not
restricted to one vendor’s software solution. Likewise,
those scientists who use close source processing software,
in either instruments or data acquisition systems, are
hindered in trouble shooting problems and there is no easy
way for outside scientific review of an algorithm’s
implementation. The increasing complexity of many mod-
ern processing algorithms has rendered “black box” testing
(validating the output given an input) insufficient to
validate the implementation of an algorithm. The ability
to conduct “white box” testing (examination of the source
code) should be a prerequisite for scientific publication of
an instrument’s measurement.

Design and Implementation

Objectives

The main design objectives of ADPAA are to provide the
following:

& A completely automated system that enables prelimi-
nary data to be generated shortly after each aircraft
flight;

& A system that fully implements the concept of missing
value codes;

& Data files that are self documenting using the concept of
meta-data;

& Standard directory structure for storing files;
& A system to enable quick analysis of data for quality

control purposes;
& Implementation of a quality assurance process whereby

manually created edits are documented in an “edit” file
and automatically applied to “raw” data files to create a
“clean” version of the data file; and

& Source code that is easily available to scientist outside
the organization.

Automation

Graphical User Interfaces (GUI) enables easy point and
click instructions but do not allow for easy automation
since GUIs require manual intervention. In contrast, a
command line interface allows easy automation of data
processing routines. The Linux operating system is based
on the philosophy of command line interfaces that do
simple things while being combined to complete complex
tasks. Commands typically utilize arguments given after the
command name itself to change execution switches and
provide necessary input values. ADPAA follows the UNIX/
Linux philosophy (Gancarz 2003) by using custom written
shell (csh, bash, etc.) scripts that accept arguments to
automate the post-processing of raw data files. Use of shell
scripts that are executed on a laptop running Linux allows
automatic generation of preliminary data files within hours
after completion of an aircraft flight. Furthermore, auto-
mated processing scripts make it trivial to reprocess data.

The most important design objective of all the automatic
processing routines is to have code that is clearly
documented and understandable. Documentation includes
a meta-data file header and references for all scientific
equations implemented by the code. Comprehensible code
is considered far more important than execution speed.
While some techniques are used to improve code execution
speed, such as limiting file input/output by utilizing
memory, they are only used when they do not increase
code complexity. ADPAA has followed the agile develop-

Earth Sci Inform

ment philosophy where flexibility and learning are stressed
over control and efficiency (Subramanian et al. 2009).
Hence, scripts are utilized over a programming environ-
ment, like FORTRAN or C, since scripts are more flexible
for linking modules together.

To facilitate processing via scripts, the concept of data
processing levels, whereby data at higher levels are derived
from lower level data, is utilized. The data processing level
concept used by ADPAA is similar to data levels used by
NASA for remote sensing data products (National Aero-
nautics and Space Administration 1986). Data level 0
contains the “raw” data files created by a data acquisition
system. At data level 1, a data file is created for each
aircraft instrument. At data level 2, parameters are
converted from engineering units (e.g. volts) to physical
units (e.g. Celsius). At data level 3, parameters from
different instruments are combined. For example, measure-
ments from a total temperature probe are combined with
true air speed measurements to determine ambient temper-
ature. At data level 4, derived parameters from different
instruments are combined. For example, the droplet
spectrums from a Forward Scattering Spectrometer Probe
(FSSP) are combined with the droplet spectrum from a 2-
dimensional cloud imaging probe (2DC).

The final step in the data processing methodology is to
create a summary file that contains all parameters of
scientific interest. The specific parameters contained in a
field project’s summary file depend on instruments
deployed and the project’s scientific objective(s). Typically,
if a field project is a continuation of an earlier project, the
summary file parameters will be the same or very similar (e.g.
different type of instrument used to measure the same
parameter). The summary data files can contain parameters
from any data level. Since parameters of scientific interest can

be measured at different frequencies, high frequency param-
eters are averaged to the summary file frequency. Typically, a
frequency of 1 Hz is used for the summary file. Figure 2
illustrates the automatic processing of data that is imple-
mented by ADPAA.

Missing value code

Missing value codes are numbers that have a physically
unrealistic value, which are used to indicate that a valid
measurement is not available. Typically, ADPAA uses a
very large number, such as 999999.9999. It is important to
note that a value of zero typically can not be used as a
missing value code since it can be a valid measurement,
such as in the case of an air temperature of 0°C.

The concept of missing value codes has been fully
incorporated into ADPAA. When processing scripts en-
counter a missing value code, they do not use the value to
calculate the derived parameter but instead substitute the
missing value code of the derived parameter. For example,
when ambient air temperature is calculated using the
Rosemount Probe temperature and true air speed data,
and the true air speed parameter is a missing value code,
the ambient air temperature will have its missing value
code inserted because a derived parameter can not be
calculated if a dependent parameter is missing. Since
missing data makes analysis more difficult, there is a
tendency to interpolate or use a standard value when a
measurement is missing; however, this should not be done
when creating a scientific data set. Once the data set has
been created, the scientist analyzing the data can decide
upon a method (e.g. Healy and Westmacott 1956; Rubin
1976; Horton and Lipsitz 2001) to handle time periods
without valid measurements.

Fig. 2 A screen shot showing
the automatic processing of the
“09_04_09_12_32_25.sea” data
file to obtain a summary file
containing parameters of scien-
tific interest. The processing
time was 5 min 49 sec on a
workstation, 6 min 9 sec on a
workstation with a remote data
file system (GB network), and
6 min 19 sec on a laptop used in
the field

Earth Sci Inform

Data format

Standard ASCII data file formatting is used for all data
during processing by ADPAA except for the inherently
binary image probe data (e.g. 2DC images). While binary
data files are smaller, the ease of using ASCII files and
the ability to quickly examine values make ASCII files
more practical. Furthermore, if file storage size is an
issue, ASCII data files can be easily and automatically
compressed to binary formats using utilities such as gzip
and bzip2.

ADPAA uses a standard ASCII file format based on a
NASA specification outlined by Gaines and Hipskind
(2009). ADPAA uses a slightly modified version of file
format number 1001. The modification is not to restrict the
line length to 132 characters but to allow any line length.
The 132 character restriction is not required for modern
software and having all parameters on a single line enables
easy file importing with software such as Perl and Micro-
soft Excel. The file format includes a meta-data header that
fully describes data contained within a respective file,
which eliminates the need for users to request such
information. In addition, meta-data allows processing
scripts and analysis software to be written in a more
generic manner. For example, each parameter’s missing
value code is part of the meta-data so it is not necessary to
hard code the missing value code into software. An
example ASCII meta-data file with a brief explanation is
given in Appendix A.

Project summary data files are created in the standard
ASCII format; however, a NetCDF formatted version of
summary data files are also created using an automated
script. NetCDF files have advantages in that they are
standard files which contain meta-data, but they are more
difficult to work with and values cannot be viewed using
text editors since it is a binary data file format. Also,
standard Linux scripts (designed to work on ASCII files)
cannot be used on the files. The additional complexity of
NetCDF files can make scientific analysis easier, especially
if analyzing multiple flights or data from multiple field
projects. However, the additional complexity of NetCDF
files is judged to add little value during data processing so
ASCII files are used instead of a binary data file format
such as NetCDF.

Directory structure

Using a standard data structure and file names during data
processing has advantages similar to using a standard
formatted data file. With a standard directory structure,
scripts can automatically perform processing tasks on files,
such as combining data from all flights into a field project
file. In addition to instrument measurement data, the

directory structure includes auxiliary data such as flight
notes, field problem descriptions, analysis plots, and
field project meta-data. Data from other measurement
platforms (e.g. surface stations, balloons, satellites) can
be included within the directory structure. A detailed
description of the directory structure is given in
Appendix B. While a formal data base, such as mysql,
could be used to store and retrieve information, the
additional complexity does not provide sufficient benefits
to make it worthwhile. Storing data within a data base
does not allow aircraft flight information to be browsed as
easily as when it is in a directory structure. Once a data set
has been constructed and is ready to be distributed, then a
software framework (e.g. Open-source Project for a
Network Data Access Protocol (OPeNDAP)) could be
used for distribution; however, such a system has not been
implemented at this time due to the limited user base. In
the future, an effort will be made to implement, alongside
the currently implemented directory structure system, a
more advanced data set storage system such as OPeNDAP
or mysql. Hopefully, this will stimulate users to take
advantage of the features that such a system offers. These
features will likely be important when conducting analysis
across multiple projects.

Results

Quality control

The terms “quality control” and “quality assurance” have
been used in meteorology in many ways (Lee et al. 2004;
Heard 2006). In this manuscript, the term “quality control” is
used to denote the process of conducting tests to check that
measurements are being made correctly and accurately, while
the term “quality assurance” is the process of reviewing a
data set to eliminate (replace with missing value codes)
measurements that are invalid due to known problems.

Quality control of airborne field project measurements
typically involves two steps. The first step is to calibrate
instruments using a traceable standard, and the second step
is to check instrument performance during a field project.
Calibrations should be done in the lab before the start of a
field project; however, there are often times when a
calibration is done after the conclusion of a field project
due to insufficient field project preparation time. ADPAA
uses a single library program (Constants) to provide
calibration constants. The Constants program requires the
measurement date, time, and platform name to provide
the correct calibration information for an instrument.
The meta-data header in the ADPAA ASCII files
contains the measurement date and platform information
and is automatically passed into the Constants program

Earth Sci Inform

during data processing. The M300 data acquisition
system is configured to automatically save files with
names based on the start date and the project table is
configured to include correct values for “Aircraft Type”
and “Aircraft ID”. These values are used by the Level 1
processing code to set correct values in the ASCII file
meta-data header. Documentation of calibrations for all
instruments on a platform is done by defining all calibra-
tions coefficients within a single platform-specific con-
stants subroutine.

The second step in quality control is to check instrument
performance during a field project. A performance check
can involve conducting a procedure similar to how the
instrument is calibrated. For example, the Forward
Scattering Spectrometer Probe (FSSP) used to measure
cloud droplets is calibrated in terms of droplet size by
passing borosilicate glass microspheres of a known size
through the instrument. While the FSSP should be
calibrated before and after each field project, performance
tests that involve passing borosilicate glass microsphere
through the probe should be performed on a regular basis
during a field project to check that the probe sizing is
similar to its calibration. Figure 3 presents results from a
series of such FSSP performance checks. While the winter
field projects are lower than the theoretical value, they are
within the instrument’s calibration uncertainty; however,
the summer measurements typically have very low values
and are not consistent with the instrument’s calibration;
therefore, measurements during this time period cannot be
used for scientific analysis. Dusty optics was probably the
cause of the low summer performance check values;
however, without conducting performance checks there
would be no way of knowing for sure that the FSSP was
not performing correctly. Analysis of data from such ill-

performing instruments can only lead to incorrect theories
and possibly inaccurate conclusions.

In addition to performance checks that involve instru-
ment calibration testing, there are aircraft performance
checks to test that an instrument is coupled to the sampling
environment. An excellent example where environmental
coupling performance checks are critical is an aerosol
instrument that uses a pump to draw air into a measurement
chamber. For example, when a cloud condensation nuclei
(CCN) counter is operated on a pressurized aircraft, a hand
operated vacuum pump should be used for a complete test
(from inlet to exit) for tubing system leaks. Without
quantitative results from such performance checks, the
instrument should not be assumed to be coupled to the
environment outside the aircraft. Analysis of data from
measurements not completely coupled to the environment
of interest cannot result in accurate conclusions about that
environment.

While airborne instruments require one or more perfor-
mance checks to ensure valid data are being obtained, there
is only a limited amount of personnel time available during
field projects to perform the checks. This limited amount of
time underscores the value of software which automatically
processes performance check data. ADPAA has several
features available to help in conducting performance checks
and in quickly reviewing data (Fig. 4). For example, data
recorded during FSSP droplet sizing performance checks
are automatically processed and can be quickly analyzed
using ADPAA’s Cplot visualization program. Cplot can be
used to determine the exact time interval that microspheres
pass through the FSSP, plot the size spectrum, and calculate
the average channel value.

The Cplot visualization program is an example of a
part of ADPAA that can easily be used for analysis of
other time series data sets. Cplot currently can read three
different ASCII files formats and is complied as a
standalone IDL module that can be executed using the
free IDL virtual machine on Linux, Windows and Mac
platforms. As a demonstration of the usefulness and
robustness of the Cplot routine, a colleague’s time series
of surface based measurements of ice nuclei concentra-
tions was plotted with Cplot within minutes of first being
shown the data files. For Cplot to be used to analyze a
new data set, files have to be in a format that Cplot
understands which can at most require writing a file
conversion script.

Quality assurance

The ADPAA Cplot visualization software is designed to
assist with quality assurance by quickly providing graphical
representation of data for scientific review. Typically, while
performing quality assurance, instrument measurements are

Fig. 3 Average channel values for the FSSP (Serial Number 1947-
028-160) from performance checks conducted during the 2007/2008
field project. All performance checks were performed in Saudi Arabia
while the FSSP was on the research King Air 200 aircraft (N825ST).
The solid horizontal line indicates the “standard” average channel
value where 15 μm beads theoretically should be measured

Earth Sci Inform

reviewed for unusual values, instrument auxiliary data are
checked, and flight notes consulted for problems. Problems
identified are documented in an edit file. The edit file
naming convention uses a file name based on an instru-
ment’s “raw” data file name, where the “raw” suffix is
replaced with an “edits” suffix.

An edit file contains the same meta-data header as a data
file with each data line containing a list of parameter values
that describe an individual edit to be applied using the
format given in Table 1. The parameters document states
when to apply the edit, what data parameter to edit, what
type of edit to make, when the edit is created, who is
making the edit, and why the edit is being made. Currently,
the only edit type implemented is “I” which means an
“invalid” measurement.

Edit files are automatically detected and processed by
ADPAA to create a “clean” (quality assured) file where
time periods identified as invalid have “raw” values
replaced with missing value codes. The “clean” file is then
used for all subsequent data processing, data averaging, and
data set analysis. ADPAA’s file naming convention uses the
“raw” suffix to indicate unedited data at the measurement
frequency, the “edits” suffix to indicate a file that docu-
ments quantity assurance edits, and the “clean” suffix to
indicate a data file that has been quality assured. Additional

suffix values (e.g. 10 Hz, 1 Hz, 10 sec) are used to indicate
average data created from a “clean” data file if it exists;
otherwise, the averaged data files are created from the
“raw” data file.

An example of a data edit of an erroneous spike is given
in Fig. 5. The total counts from a Passive Cavity Aerosol
Spectrometer Probe (PCASP) range from approximately
500 cm−3 to approximately 900 cm−3 and then back to
500 cm−3 during a three second period. The size spectrum
shows that channel one has a very large value compared to
channels two and three (right panel of Fig. 5). An example
of a valid spike in the aerosol distribution can be seen in
Fig. 6. The valid spike is nearly an order of magnitude
larger than the surrounding values; however, it lasts for 10
seconds and the size spectrum shows that the spike occurs
in several different channels. Since invalid (Fig. 5) and
valid (Fig. 6) spikes can both have similar magnitudes, care
must be taking when performing quality assurance on
PCASP measurements.

Discussion

The ability to quickly process and visualize data, which
the ADPAA software package makes possible, enables

Fig. 4 Screen shot showing
“Cplot” being used to analyze
the 9 April 2009 summary data
file

Table 1 Comma delimited parameters that make up an ADPAA edit file

Start time End time Short name Type Year Day of year Author Reason

Second from
midnight when
edit starts.

Second from
midnight when
edit ends.

Short name of
the parameter
to apply edit.

Type of edit
to be applied.

Year the edit
was made.

Day number of
the year the edit
was made.

Name of person
making edit.

Why the edit
is being made.

Earth Sci Inform

regularly scheduled performance checks to be conducted
throughout a field project. By routinely conducting
performance checks, a quality controlled data set is
created for scientific analyses. Without robust software
like ADPAA, there are typically insufficient personnel
resources available on aircraft field projects to perform
all required instrument checks to ensure properly func-
tioning instruments. Field scientists do their best job;
however, post-project quality assurance often reveals
invalid measurements.

The PCASP spike example illustrates by Figs. 5 and 6
shows the advantage of having an experienced scientist
familiar with an instrument’s theory and a respective
atmospheric parameter’s normal behavior while conduct-
ing data quality assurance. Care must be taken when

conducting quality assurance to only make edits that
remove truly invalid data. There are certain things to
look for with each measurement, but no attempt is made
in the ADPAA software package to construct automatic
software that applies edits. It would be a very difficult
task to write such a program and it is felt worthwhile to
have a scientist review all measurements. Development
effort has instead been put into creating software that
makes data visualization easy and creation of edit files
simple.

As the examples in the previous section illustrated,
conducting quality control and quality assurance are
important steps to obtaining a valid data set which can
be used for scientific analysis; however, an additional
step which should be conducted is the timely review of

Fig. 5 PCASP total counts time series (left) and size spectrum (right) showing an erroneous spike during the first flight on 10 January 2008 in
Saudi Arabia

Fig. 6 PCASP total counts time series (left) and size spectrum (right) showing a valid spike during the 12 March 2008 flight in Saudi Arabia

Earth Sci Inform

data during field projects. Typically, data is reviewed in
real-time by a flight scientist; however, measurements
may seem odd but possibly believable. An example of
this occurred on the 21 June 2008 Polarimetric Cloud
Analysis and Seeding Test 2 (POLCAST2) field project
(Fig. 7). Without in-depth post-flight review of the cloud
condensation nuclei counter raw measurements, indica-
tions of a leak would probably not have been discovered
and the rest of the field project’s flights could have
contained invalid measurements like the 21 June 2008
flight.

White box science

The term “White Box Science” is used here analogous to
the way white box testing is used in software engineering
(Pressman 2005). With White Box Science, scientific
results can be checked (tested) not only by comparing
scientific results but also by examining, validating and
reproducing the internal aspects of the scientific analysis.
This concept is analogous to white box testing where the
internal working of a software package is tested by
examining, validating and testing the source code instead
of just conducting black box testing on the results
produced given a particular input. As an example,
consider measurements from any aircraft instrument used
in a scientific field project. With Black Box Science, data
processing would be implemented in the instrument itself
using an embedded executable to conduct real time
processing of measurements to produce derived parame-

ters. With White Box Science, the raw measurements
would be recorded and the source codes used to process
measurements and calculate derived parameters would be
available for scientific review.

White Box science is being practiced when the
complete data sets, including raw data files, quality
control data (e.g. ground check data and calibration data
for an aircraft field project), and data processing source
code is published. Some scientists may feel that
practicing White Box Science as described in this paper
is costly and unnecessary; however, the alternative,
Black Box Science, has the real significant cost with
respect to one’s time and money. Development and
deployment of independent instrumentation to enable
simultaneous measurements of a parameter is difficult
and costly. In addition, when simultaneous measurements
are made, and they invariably do not agree, it can be
very difficult to know the reasons for disagreement
without the ability to examine the processing code of
each instrument.

Black Box processing can be conducted along with
White Box Science application. In fact, UND scientists use
the M300 data acquisition system to process and display
data in real-time on aircraft flights. However, this real-time
data is not used for scientific analysis. Many instruments
used in scientific research (e.g. Condensation Particle
Counter) contain software that only allows Black Box
processing. Utilizing these instruments for scientific
research is very attractive since their wide user base
lowers the instrument’s cost. However, for scientific
research, these instruments must provide raw measure-
ment parameters, without calibrations being applied, in
addition to internally calculated parameters. This allows
for development of open data processing software which
is critical to scientific research. Ideally, companies would
partner with researchers on development of processing
software for their instruments. Researchers are interested
in accurate measurements and hence will develop
processing software that does not utilize as many
assumptions. In addition to being an external check on
the accuracy of processing software, researchers can be
viewed as testers of new methods that the company can
implement in their future Black Box data processing.
This is similar to the model utilized by the commercial
Linux Company, Red Hat Inc., when they started their
open source Fedora project.

Conclusion

Software to effectively process and quickly analyze aircraft
measurements has been developed. The ADPAA software
package can create preliminary data within hours of an

Fig. 7 The 1 Hz averaged total (0.1–3.0 μm in diameter) aerosol
concentration measured by the Passive Cavity Aerosol Spectrometer
Probe (PCASP) versus the University of Wyoming Cloud Condensa-
tion Nuclei (CCN) counter concentration (1% supersaturation). The
solid green line is a one-to-one line. All valid out of cloud measure-
ments (FSSP total number concentration less than 50 # cm−3) obtained
during the POLCAST2 field project are presented. Both the PCASP
and CCN counter concentrations have been adjusted to standard
temperature and pressure (STP)

Earth Sci Inform

aircraft flight and facilitate quality control during field
projects. Robust software is critically important to obtaining
a scientifically useful data set that can be analyzed to meet
project’s objectives and effectively move scientific research
forward. Without necessary software tools to facilitate
quality control and quality assurance of measurements,
field projects will only generate meaningless data and not
the desired scientific information. Furthermore, data sets
that have been quality controlled and quality assured as
described in this manuscript, allows for the data sets to be
used outside of the research project they were created for
and enable the data set to be combined with data sets from
other research projects (assuming the other project follow
similar procedures). This is very important since research
projects in Earth Science do not have enough observations;
therefore, being able to combine observations from differ-
ent projects is very important to address many research
questions.

Generation of scientific results in an e-science envi-
ronment requires attention to data provenance (Simmhan
et al. 2005) for which the ADPAA frame work provides a
base which is applicable to any times series data set found
in Earth Science. The ADPAA software has been used
successfully for many years at the University of North
Dakota for processing all Citation Research Aircraft data,
in teaching the “Measurement System” graduate course,
and for conducting an airborne training program in
Riyadh, Saudi Arabia in April 2010. During the UND
lead Spring 2009 Field Project in Saudi Arabia, ADPAA
was used to process and analyze balloon measurements
to make comparisons between aircraft and rawinsonde
profiles. During the summer of 2010, ADPAA will be
used for processing measurements made on Unmanned
Aircraft Systems and surface measurements obtained as
part of the POLCAST3 research project. Research
projects in Mali and Saudi Arabia lead by the Research
Application Laboratory of the National Center of
Atmospheric Research used ADPAA software. The
ADPAA software package has been demonstrated to
several companies (Weather Modification Incorporated,
Aventech Research Inc., Airdat LLC). So far, ADPAA
has been used mainly for airborne measurements in
atmospheric science research programs; however, the
software package is able to work with any time series
data set. In particular, the Cplot visualization program
can be used in the analysis of any time series data set
in the Earth Sciences. While the complexity of a
programmatic solution, such as ADPAA, may appear
to pose a steep learning curve, the amount and
complexity of data generated by today’s instrumentation
are making old solutions such as spreadsheets less
efficient in the long-term.

Availability and requirements

Open source

In November 2008, an open source project for aircraft data
processing was started at Source Forge (Source Forge
2009). Source Forge hosts many open source projects and
makes available several facilities, such as version control
systems (i.e. Subversion (SVN) and Concurrent Versions
System (CVS)), which facilitates open publication of the
source code, allows anonymous download of the source
code, and enables several code developers to work
simultaneously. Furthermore, revisions are date stamped
which allows the source code as it existed on a certain date
to be downloaded. Original code for a desired file that was
used to produce a respective data file can be retrieved and
used to reproduce data parameters identical to other
completed code executions. This is possible because any
file created contains meta-data that lists the respective
processing date.

Currently, ADPAA has four developers, two of which
began while undergraduate students. With the modular
design of ADPAA, undergraduate students can make
substantial contribution to research projects by writing code
for a particular module without the need to understand
either all the previously written code or the overall
processing methodology. The faculty mentor can review
and submit code for students (or any new developer) until
their coding is mature enough to become a developer
themselves. Highly motivated undergraduate students have
matured to developer level after working for approximately
one year (includes a full summer) on the project. Addition-
ally, the Source Forge project is open to developers outside
the University of North Dakota. Current developers are
willing to assist new users that are interested in contributing
to the project.

ADPAA is licensed using the GNU General Public
License, version 3, 29 June 2007 (General Public License
2009) which allows anyone to use and modify the
source code. The GNU General Public License is
termed a highly restrictive license since it required that
any derivative works remain subject to the same license
and by prohibiting the mixing of open and closed
source code (Lerner and Tirole 2005). The ADPAA
source code can be easily downloaded using a Subver-
sion client (see Software Files section for details). By
hosting ADPAA at Source Forge instead of a local
university server, it is hoped that a larger number of
people will use the software and contribute to the
project. A wider user and developer base will likely lead
to more robust software while reducing overall develop-
ment effort.

Earth Sci Inform

Operating system and programming language

Before development of the current ADPAA processing
package was first started back in 2002, the aircraft data
processing software was completely implemented using
FORTRAN code (SUN compiler) on a UNIX Operating
System (OS). To enable code to be developed in less time, it
was decided to move towards using the Interactive Data
Language (IDL) and C-shell (Csh) wrapper scripts on a
UNIX/Linux OS. Presently, in 2010, all the core processing
code in ADPAA is implemented in IDL with csh and Bash
wrapper scripts and it is typically run on Linux (i.e. Redhat,
Fedora, Ubuntu) laptops and workstations. Currently csh
scripts are being phased out, with new and revised scripts
being written using Bash. In addition to IDL code, ADPAA
contains code written in FORTRAN (GNU gfortran compil-
er), C (GNU gcc compiler), and Perl. While using several
programming languages has the disadvantage of varied
programming syntax, each language has advantages with
respect to ease of code development for particular tasks. For
example, Perl is much easier to use than IDL when filtering
ASCII data files. Multi-language implementation is essential
for an evolutionary software development project where a
package has to support ongoing projects (i.e. airborne field
projects) while moving toward using new tools (i.e. moving
from FORTRAN to IDL and csh to Bash scripts).

Even with the many languages used by ADPAA, it only
requires a typical installation of Linux/Unix to run and has
been tested on Redhat, Fedora and Ubuntu. While
modification of the IDL source code requires an IDL
software license, using ADPAA can be done with only the
freely available IDL virtual machine. Data processing is
implemented using many scripts (csh, Bash, Perl) and
hence requires using a Linux type operating system;
however, the Cplot analysis program is written completely
in IDL and can be downloaded (Cplot 2010) and run on the

Mac and Microsoft Windows series of operating systems
using a free IDL virtual machine.

Hardware

The computer hardware requirements of the ADPAA
software packages are modest in today’s computer environ-
ment. Table 2 shows that ADPAA compile time and data set
processing time ranges from minor (45 sec and 100 min;
respectively) to almost trivial (2 sec and 34 min; respec-
tively). Since ADPAA requires a lot of data input/output,
the data set storage location can increase the processing
time by 10–20% for data sets stored on a Network File
System (NFS) mounted drive and by more 200% for a data
set on USB mounted drives (Table 2). Considering that a
typical complete airborne data set, POLCAST 2, is
approximately 9 Gbytes, the data storage capacity is pretty
minor when compared to typical radar or satellite data sets
used in Earth Science research.

Future direction

Current code development is moving away from the use of
licensed, commercial products toward the use of open-
source software to reduce cost. On the user side, an IDL
executable can run using the free IDL virtual machine;
however, developers must have access to a paid license.
The need for an IDL license could greatly limit the number
of potential developers, especially from universities and
institutions that are located outside the United States.
Furthermore, open-source software solutions have matured
to the point of offering those necessary features required for
many scientific research projects. Developers of new code
are encouraged to use the programming language that they
believe will work best, with a preference given to using
open-source software. While there are several suitable

Table 2 Summary showing the time to compile ADPAA and the time to process a typical aircraft data set using ADPAA on a range of currently available
computer systems. The processing time is for the Polarimetric Cloud Analysis and Seeding Test 2 (POLCAST2) field project which had 12 aircraft flights
and 15 ground performance checks. The year given is when the computer hardware was purchased. All systems were running the Red Hat 5 Operating
System (OS) with the exception of laptop, Convection, which was running the Fedora 12 OS

Name (system) Year CPU Cores Memory Compile time Processing time
yyyy Type # MBytes Seconds Minutes

Rayleigh
(Workstation)

2005 Intel Pentium 4 CPU 3.00 GHz 1 894 44.6 209.90 (NFS Drive) 99.88 (Local Drive)

Buster
(Workstation)

2006 AMD Athlon 64 CPU 3500 2.20 GHz 1 3,090 42.7 85.93 (NFS Drive) 77.70 (Local Drive)

Convection
(Laptop)

2007 Intel Core2 Duo CPU T7700 2.40 GHz 2 4,116 11.3 169.98 (USB Drive) 57.56 (Local Drive)

Plume (Server) 2008 Intel Xeon CPU E5205 1.86 GHz 2 16,300 4.0 74.34 (NFS Drive) 68.96 (Local Drive)

Radar2 (Server) 2009 Intel Xeon CPU X5260 3.33 GHz 2 4,116 2.7 41.28 (NFS Drive) 34.35 (Local Drive)

Table 2 Summary showing the time to compile ADPAA and the time
to process a typical aircraft data set using ADPAA on a range of
currently available computer systems. The processing time is for the
Polarimetric Cloud Analysis and Seeding Test 2 (POLCAST2) field

project which had 12 aircraft flights and 15 ground performance checks.
The year given is when the computer hardware was purchased. All
systems were running the Red Hat 5 Operating System (OS) with the
exception of laptop, Convection, which was running the Fedora 12 OS

Earth Sci Inform

programming options currently available, it is this author’s
opinion that Python, with library extension such as NumPy
(NumPy 2010) and SciPy (SciPy 2010), is the best overall
language for future development. NumPy provides masked
array (Masked Array 2010) module to easily work with
field data. For two dimensional graphics, matplotlib
(Matplotlib 2010) produces publication quality plots in-
cluding unicode and Latex support and for 3D –VTK-based
visualization there is Mayavi (Mayavi 2010). Powerful
statistical computing is possible in Python via an R bridge
(Rpy 2010) that enables the R programming language to be
accessed from within Python code.

Expanding ADPAA to more users and developers will
require improved documentation, which is a near term
objective. More technical documentation is planned to be
added to the ADPAA Source Forge web site. This documen-
tation would include processing diagrams that describe the
sequence of data file creation and depict those scripts utilized
for processing of data from each respective instrument.

In addition to past and current use of ADPAA for
research conducted by the University of North Dakota
Citation Research Aircraft, ADPAA has been used with
data obtained from the University of Wyoming King Air
Research Aircraft and several aircraft operated by Weather
Modification Inc. (WMI). While current implementation of
ADPAA is set up to process data from a SEA Inc. data
acquisition system, it could be easily modified to work with
other systems. Furthermore, the basic philosophy of
ADPAA is to work with time series data; hence, any time
series data could be analyzed using the tools developed in
ADPAA. These time series data could be from platforms
such as Unmanned Aerial Vehicles (UAV) or from surface
sites.

While ADPAA implementation is currently limited to the
data collected from instrumentation deployed on previous
field projects, and is thus limited to a select user base, the
ADPAA analysis tools have a potentially wider user base
since they work on any time series data. The main ADPAA
analysis tool is Cplot (IDL based) which is used to quickly
display customizable data plots. Only limited future
development of Cplot is planned in the hope of moving
towards a completely new analysis package. Future analysis
tool development will look towards utilizing an existing
open source (e.g. Python) based project or collaboration on
development of a new analysis tool. Since NetCDF is a
widely-used format, summary data files are presently
converted to NetCDF. However, existing tools (e.g. ncplot,
ncview) for analysis of NetCDF files are found to lack in
necessary features such as a box and whisker plot option
and a statistical data analysis package. A graphical interface
driven, open-source software package for visualization and
display of time-series and NetCDF-formatted data, that has
a large developer base and allows easy addition of new

features, would be an ideal analysis tool for our scientific
research.

Software files

The latest version of the Aircraft Data Processing and Analysis
(ADPAA) software package can be downloaded from Source
Forge using SVN. Note that ADPAA has been moved from
using CVS to using SVN as the version control system.

To download ADPAA source code using SVN access:

Create directory /usr/local/ADPAA if necessary
Change ownership if necessary, i.e. chown username /
usr/local/ADPAA
cd /usr/local/ADPAA
svn co https://adpaa.svn.sourceforge.net/svnroot/adpaa/
trunk
cd trunk
mv CVSROOT src .svn ..
cd ..
rmdir trunk

Note to compile the many ADPAA modules requires an
IDL license. To build and install executables use the
following.

Create directory /usr/local/ADPAA/bin
Create directory /usr/local/ADPAA/sav
Create directory /usr/local/ADPAA/share
cd /usr/local/ADPAA/src/build/ && make

Define and export variables system (typically in /etc/
profile and/or /etc/csh.cshrc).

ADPAA_DIR=/usr/local/ADPAA
IDL_PROG=/usr/local/ADPAA/src
SVN_EDITOR=vim
Add /usr/local/ADPAA/bin to your PATH environmen-
tal variable.

Test the installation by executing a script such as cplot.

Acknowledgments Several research projects have indirectly funded
the development of the ADPAA software package and several people
have helped with the software development. Roelof Burger and
Duncan Axisa have helped with the development of the data directory
structure. Chris Kruse, David Keith, Gökhan Sever, Fred Remer, Mike
Poellot and Aaron Bansemer have reviewed and commented on draft
versions of the manuscript.

Appendix A

ADPAA uses a standard ASCII data file which contains
meta-data in the header. An example file is given below.
Variable labels in curly brackets are added on the left with
an explanation of the labels given below the example data
file.

Earth Sci Inform

https://adpaa.svn.sourceforge.net/svnroot/adpaa/trunk
https://adpaa.svn.sourceforge.net/svnroot/adpaa/trunk

NLHEAD: Number of lines (integer) composing the file
header. NLHEAD is the first recorded value on the first line
of an exchange file.

FFI: ASCII file format number. For the UND Citation
aircraft data this will always be 1001.

ONAME: A character string specifying the name(s) of
the originator(s) of the exchange file, last name first. On
one line and not exceeding 132 characters.

ORG: Character string specifying the organization or
affiliation of the originator of the exchange file. Can
include address, phone number, email address, etc. On
one line and not exceeding 132 characters.

SNAME: A character string specifying the source of
the measurements or model results which compose the
primary variables, on one line and not exceeding 132
characters. Can include instrument name, measurement
platform, etc.

MNAME: A character string specifying the name of the
field project that the data were obtained from.

IVOL: Volume number (integer) of the total number of
volumes required to store a complete dataset, assuming
only one file per volume. To be used in conjunction with
NVOL to allow data exchange of large data sets requiring
more than one volume of the exchange medium (diskette,
etc.).

NVOL: Total number of volumes (integer) required to
store the complete dataset, assuming one file per
volume. If NVOL>1 then each volume must contain a

file header with an incremented value for IVOL, and
continue the data records with monotonic independent
variable marks.

DATE: UT date at which the data within the exchange
file begins. For aircraft data files DATE is the UT date of
takeoff. DATE is in the form YYYY MM DD (year, month,
day) with each integer value separated by at least one space.
For example: 1989 1 16 or 1989 01 16 for 16 January 1989.

RDATE: Date of data reduction or revision, in the same
form as DATE.

DX(s): Interval (real) between values of the s-th
independent variable, X(i,s), i=1,NX(s); in the same units
as specified in XNAME(s). DX(s) is zero for a non-uniform
interval. DX(s) is non-zero for a constant interval. If DX(s)
is non-zero then it is required that NX(s)=(X(NX(s),s)-X(1,s)) /
DX(s)+1. For some file formats the value of DX also depends
on the unbounded independent variable and is expressed as
DX(m,s).

XNAME(s): A character string giving the name and/or
description of the s-th independent variable, on one line
and not exceeding 132 characters. Include units of
measure and order the independent variable names such
that, when reading primary variables from the data
records, the most rapidly varying independent variable
is listed first and the most slowly varying independent
variable is listed last. Currently this is Time [Seconds]
from midnight on day aircraft flight started for all UND
exchange files.

Earth Sci Inform

NV: Number of primary variables in the exchange file
(integer). This number plus one (for the time value) gives
the number of parameters in the data file.

VSCAL(n): Scale factor by which one multiplies
recorded values of the n-th primary variable to convert
them to the units specified in VNAME(n). Currently this is
1 for all UND Citation Aircraft recorded values.

VMISS(n): A quantity indicating missing or erroneous
data values for the n-th primary variable. VMISS(n) must
be larger than any “good” data value, of the n-th primary
variable, recorded in the file. The value of VMISS(n)
defined in the file header is the same value that appears in
the data records for missing/bad values of V(X,n).
Currently the majority of UND parameters use a VMISS
value of 999999.9999.

VNAME(n): A character string giving the name and/or
description of the n-th primary variable, on one line and
not exceeding 132 characters. Include units of measure
the data will have after multiplying by the n-th scale
factor, VSCAL(n). The order in which the primary
variable names are listed in the file header is the same
order in which the primary variables are read from the
data records, and the same order in which scale factors
and missing values for the primary variables are read
from the file header records.

NSCOML: Number of special comment lines (integer)
within the file header. Special comments are reserved to
note special problems or circumstances concerning the data
within a specific exchange file so they may easily be found
and flagged by those reading the file. If NSCOML=0 then
there are no special comment lines.

NNCOML: Number of normal comment lines (integer)
within the file header, including blank lines and data
column headers, etc. Normal comments are those which
apply to all of a particular kind of dataset, and can be used
to more completely describe the contents of the file. If
NNCOML=0 then there are no normal comment lines.

DTYPE: Version description of the data. Typically either
Preliminary or Final Data.

VFREQ: Time frequency of the data.
VDESC: A character string on a single line containing a

short description of each variable in the exchange file. No
spaces are allowed in each short variable description.

VUNITS: A character string on a single line containing
the units of each variable in the exchange file. No spaces
are allowed in each unit’s description.

Appendix B

The directory structure for ADPAA data sets is
described below. The description starts from the top of
the directory tree and works downward. Each level is

defined by a name, notes, and examples. The name is
one or two words that define the name of the level. The
notes section contains a short description of the level.
The example section contains example directories
related to the Saudi Arabia 2007/2008 Winter field
project. Items in the directory given below are indented
as to indicate which directory level they are contained
within. The directory tree used by ADPAA has a general
directory structure tree as follows.

Project Name/
General Time Period/
General Data Type/
General Instrument Type/
Measurement Purpose/
Particular Time/
Particular Data Type/

A specific example of the directory tree used by ADPAA
is given below with the general directory structure tree
name being referenced highlighted in bold fonts.

NAME:
Project Name

NOTES:
This is the top of the directory tree. It groups projects
by geographical regions.

EXAMPLES:
SaudiArabia/
Mali/

NAME:
General Time Period

NOTES:

Groups time periods together that span a single
deployment or similar atmospheric conditions. All
sub-directories will follow a similar structure.

EXAMPLES:
Mali/
SaudiArabia/
Spring07/
Winter0708/
Summer08/

NAME:

General Data Type
NOTES:

Groups different types of data together based on
where it is obtained.

EXAMPLES:
Mali/
SaudiArabia/
Spring07/
Winter0708/

Earth Sci Inform

Aircraft/
Directory that contains all aircraft data from the
winter project, located in the Winter0708 folder.

Documents/
Directory that contains documents created or
related to the winter project.

Forecast
Directory that contains the forecast data for the
winter project. Forecast data is grouped into
year, month, day sub-directories.

Summer08/

NAME:
General Instrument Type

NOTES:
Groups data from different platforms and instru-
ments together.

EXAMPLES:
Mali/
SaudiArabia/
Spring07/
Winter0708/
Aircraft/
KingAir_N825ST/

Documents/
Forecast/

Summer08/

NAME:

Measurement Purpose
NOTES:

Groups data that have a similar purpose together.
EXAMPLES:
Mali/
SaudiArabia/
Spring07/
Winter0708/
Aircraft/
KingAir_N825ST/
DMTCCNCTest/

Contains all test data for the DMT and
CCNC instruments.

Documents/
Directory for aircraft specific documentation.

Flight/
Directory for the aircraft flight data.

GroundChecks/
Directory for the data related to all
calibration checks and ground tests.

Documents/
Forecast/

Summer08/

NAME:
Particular Time

NOTES:
Groups flights that have a similar start times together.
Directory name based on the start time for the data. If
flight has more than 1 files, directory should be named
YYYYMMDD_?, where ? is the number of the flight.
Under this directory the names should then be similar
to the standard directory.

EXAMPLES:
Mali/
SaudiArabia/
Spring07/
Winter0708/
Aircraft/
KingAir_N825ST/

DMTCCNCTest/
Documents/
Flight/

20080308_074553/

Directory should have a name of
YYYYMMDD_HHMMSS. The name is
unique. Additional information is given in
upper level directory or can be put in a
readme file in the directory itself.

GroundChecks/
Documents/
Forecast/

Summer08/

NAME:
Particular Data Type

NOTES:
Groups data together based on particular data type.

EXAMPLES:

Mali/
SaudiArabia/

Spring07/
Winter0708/

Aircraft/

KingAir_N825ST/

DMTCCNCTest/
Documents/
Flight/

20080308_074553/

Combined/

Directory that contains data from
multiple data streams.

Notes/

Directory that contains flight notes
and reports.

Earth Sci Inform

M300_Tables/

Contains the M300 tables used
during the flight.

Photos/

Directory for digital images from
the flight.

PostProcessing/

Directory for the post-processing
data stream which is based on the
*.sea file.

QuickChecks/

Directory for plots of the data.
RealTime/

Directory for the real-time data
stream which is based on the
M300 formula tables.
Directory contains the *.txt *.csv
*.raw file.

Tamu/

Directory that contains the DMA
and DMT CCNC data streams.

Video/

Directory to store any video from
the flight.

M300_Tables/

Contains the M300 tables used
during the flight.

GroundChecks/
Documents/
Forecast

Summer08/

References

Cplot (2010) Download ADPAA Files Now. https://sourceforge.net/
projects/adpaa/files/. Accessed May 2010

Gaines SE, Hipskind RS (2009) Format Specification for Data
Exchange. http://aerosol.atmos.und.edu/ADPAA/formatspec.txt.
Accessed July 2009

Gancarz M (2003) Linux and UNIX Philosophy, Digital Press, 12
Crosby Drive, Bedford, MA 01730, USA

General Public License (2009) GNU General Public License Version3,
29 June 2007. http://www.gnu.org/copyleft/gpl.html. Accessed
August 2009

Healy M, Westmacott M (1956) Missing values in experiments
analysed on automatic computer. J R Stat Soc, Ser C, Appl Stat
5(3):203–206

Heard DE (2006) Field measurements of atmospheric composition. In:
Analytical techniques for atmospheric measurement. Blackwell
Publishing, Oxford, UK

Holzwarth S, Freer M, Bachmann M, Wang X (2010) FP7-N6SP-
DN6.2.1-List of Existing Data Pre-processing Software. http://

www.eufar.net/search/doc/doc_pres.php?id_doc=4343&all=1.
Accessed May 2010

Horton NJ, Lipsitz SR (2001) Multiple imputation in practice:
comparison of software packages for regression models with
missing variables. Am Stat 55(3):244–254

Lee X, Massman W, Law B (2004) Post-field data quality control. In:
Handbook of micrometeorology: a guide for surface flux mea-
surement and analysis. Kluwer Academic Publishers, Dordrecht

Lerner J, Tirole J (2005) The scope of open source licensing. J Law
Econ Organ 21(1):20–56. doi:10.1093/jleo/ewi002

Masked Arrays (2010) NumPy v1.5.dev8106 Manual (DRAFT).
http://docs.scipy.org/doc/numpy/reference/maskedarray.html.
Accessed May 2010

Matplotlib (2010) Python Plotting. http://matplotlib.sourceforge.net/.
Accessed May 2010

Mayavi (2010) 3D Scientific Data Visualization and Plotting. http://
code.enthought.com/projects/mayavi/. Accessed May 2010

Murray JJ, Nguyen LA, Daniels TS, Minnis P, Schaffner PR, Cagle
MF, Nordeen ML, Wolff, CA, Anderson MV, Mulally DJ, Jensen
KR, Grainger CA, Delene DJ (2005) Tropospheric Airborne
Meteorological Data and Reporting (TAMDAR) icing sensor
performance during the 2003/2004 Alliance Icing Research
Study (AIRS II). 43rd AIAA Aerospace Sciences Meeting and
Exhibit - Meeting Papers Pages 11935–11945

National Aeronautics and Space Administration (1986) Report of
the EOS Data Panel, Vol IIa Earth Observing System Data
and Information System. Technical Memorandum 87777,
National Aeronautics and Space Administration (NASA),
Washington, DC

Noble CA, Vanderpool RW, Peters TM, McElroy FF, Gemmill DB,
Wiener RW (2001) Federal reference and equivalent methods for
measuring fine particulate matter. Aerosol Sci Technol 34
(5):457–464

NumPy (2010) Scientific Computing Tools for Python. http://numpy.
scipy.org/. Accessed May 2010

Pinch T (1985) Towards an analysis of scientific observation: the
externality and evidential significance of observational reports in
physics. Soc Stud Sci 15(1):3–36

Prenni AJ, Harrington JY, Tjernstom M, DeMott PJ, Avramov A,
Long CN, Kreidenweis SM, Olsson PQ, Verlinde J (2007) Can
ice-nucleating aerosols affect arctic seasonal climate? Bull Am
Meteorol Soc 88(4):541–550. doi:10.1175/BAMS-88-4-541

Pressman RS (2005) Software testing techniques. In: Software
engineering: a practitioner’s approach, 6th edn. McGraw Hill,
New York, pp 389–428

Rpy (2010) Low-level Interface to R. http://rpy.sourceforge.net/rpy2.
html. Accesed May 2010

Rubin DB (1976) Noniterative least squares estimates, standard errors
and F-Tests for analyses of variance with missing data. J R Stat
Soc B Methodol 38(3):270–274

Science Engineering Associates (2009) M300 Data Acquisition
System. http://www.scieng.com/support/m300.htm. Accessed
December 2009

SciPy (2010) Open-source software for mathematics, science, and
engineering. http://www.scipy.org/. Accessed May 2010

Simmhan YL, Plale B, Gannon D (2005) A survey of data provenance
in e-science. SIGMOD Rec 34(3):31–36. http://doi.acm.org/
10.1145/1084805.1084812

Source Forge (2009) Airborne Data Processing and Analysis. http://
sourceforge.net/projects/adpaa/. Accessed July 2009

Subramanian GH, Gary K, Jiang JJ, Chien-Lung C (2009) Balancing
four factors in system development projects. Commun ACM 52
(10):118–121

Sukovich EM, Kingsmill DE, Yuter SE (2009) Variability of graupel and
snow observed in tropical oceanic convection by aircraft during
TRMM KWAJEX. J Appl Meteorol Climatol 48(2):185–198

Earth Sci Inform

https://sourceforge.net/projects/adpaa/files/
https://sourceforge.net/projects/adpaa/files/
http://aerosol.atmos.und.edu/ADPAA/formatspec.txt
http://www.gnu.org/copyleft/gpl.html
http://www.eufar.net/search/doc/doc_pres.php?id_doc=4343&all=1
http://www.eufar.net/search/doc/doc_pres.php?id_doc=4343&all=1
http://dx.doi.org/10.1093/jleo/ewi002
http://docs.scipy.org/doc/numpy/reference/maskedarray.html
http://matplotlib.sourceforge.net/
http://code.enthought.com/projects/mayavi/
http://code.enthought.com/projects/mayavi/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://dx.doi.org/10.1175/BAMS-88-4-541
http://rpy.sourceforge.net/rpy2.html
http://rpy.sourceforge.net/rpy2.html
http://www.scieng.com/support/m300.htm
http://www.scipy.org/
http://doi.acm.org/10.1145/1084805.1084812
http://doi.acm.org/10.1145/1084805.1084812
http://sourceforge.net/projects/adpaa/
http://sourceforge.net/projects/adpaa/

	Airborne data processing and analysis software package
	Abstract
	Introduction
	Design and Implementation
	Objectives
	Automation
	Missing value code
	Data format
	Directory structure

	Results
	Quality control
	Quality assurance

	Discussion
	White box science

	Conclusion
	Availability and requirements
	Open source
	Operating system and programming language
	Hardware
	Future direction
	Software files

	Appendix A
	Appendix B
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

