=

Measurement
and Uncertainty

2—1 BASIC NATURE OF MEASURING PROCESS

-Measurement is. the process of quantifying our experience of the external
world. The nineteenth-century Scottish scientist, Lord Kelvin, once said that
“when you can measure what you are speaking about and express it in num-
bers, you know something about it; but, when you cannot measure it, when
you cannot express it in numbers, your knowledge is of a meager and unsatis-
factory kind; it may be the beginning of knowledge, but you have scarcely in
your thoughts advanced to the stage of science.” While this may be a slight
overstatement, it remains true that measurements constitute one of the basic in-
gredients of experimenting. We shall not reach a satisfactory level of compe-
tence in experimenting without knowledge of the nature of measurement and
the significance of measurement statements.

It is obvious that the quantifying process will almost invariably involve
comparison with some reference quantity (how many paces wide is my back
yard?). It is equally obvious that the good order of society requires extensive
agreement about the choice of reference quantities. The question of such mea-
Surement standards, defined by legislation and subject to international agree-
ment, is extensive and important. No one seriously interested in measurement
can ignore the question of defining and realizing standards in his area of work.,
A discussion of this important topic here would, however, distract us from our
chief concern, the process of measuring. We shall, therefore, leave the topic of
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standards without further mention except reference to the texts listed in the
Bibliography, and take up the study of actual measuring processes.

Let us start at the most basic level with an apparently simple measure-
ment; let us try to find out what kind of process is involved and what kind of
statement can be made. If I give the notebook in which this is being written to
someone and ask him to measure its length with a meter stick, the answer is
absolutely invariable—the length of the notebook is 29.5 cm. But that answer
must make us wonder: are we really being asked to believe that the length of
the book is exactly 29.50000000 . . . . . .. cm? Surely not; such a claim is
clearly beyond the bounds of credibility. So how are we to interpret the an-
swer? A moment’s thought in the presence of the notebook and a meter stick
will make us realize that, far from determining the “right” or “exact” value; the
only thing we can realistically do is approach the edge of the notebook along
the scale, saying to ourselves as we go: “Am [ sure the answer lies below
30 cm? Below 29.9 cm? Below 29.8 ¢cm?” The answer to each of these ques-
tions will undoubtedly be “Yes.” As we progress along the scale, however, we
shall eventually reach a point at which we can no longer give the same
confident reply. At that point we must stop, and we identify thereby one end of
an interval that will become our measured value. In a similar way we can ap-
proach the edge of the notebook from below, asking ourselves at each stage:
“Am I sure that the answer lies above 29.0 cm? 29.1 cm,” and so on. Once
again we shall reach a value at which we must stop, because we can no longer
say with confidence that the answer lies above it. By the combination of these
two processes we identify an interval along the scale. It is the smallest interval
that, as far as we can be certain, does contain our desired value; within the in-
terval, however, we do not know where our answer lies. Such is the only real-
istic outcome of a measuring process. We cannot look for exact answers, and
we must be content with measured values that take the form of intervals. Not
only does this example illustrate the essential nature of a measuring process, it
also provides guidance for actually making measurements. The process of ap-
proaching the value we seek from each side separately reminds us of the neces-
sity of stating the result as an interval, and also makes it easier to identify the
edges of that interval.

The final outcome of our discussion is a most important one. As we make
measurements and as we report the results we must keep in mind constantly
this fundamental and vital point—measurements are not exact, single numbers
but consist of intervals, within which we are confident that our desired value
lies. The act of measurement requires us to determine both the location and
width of this interval, and we do it by the careful exercise of visual judgment
every time we make a measurement. There are no rules for determining the
size of the interval, for it will depend on many factors in the measuring proc-
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ess. The type of measurement, the fineness of the scale, our visual acuity, the
lighting conditions—all will play a part in determining the width of the mea-
surement interval. The width, therefore, must be determined explicitly each
time a measurement is made. For example, it is a common error to believe
that, when making a measurement using a divided scale, the “reading error” is
automatically one half of the finest scale division. This is an erroneous over-
simplification of the situation. A finely divided scale used to measure an object
with ill-defined edges can give a measurement interval as large as several of
the finest scale divisions; a well-defined object and good viewing conditions,
on the other hand, may permit the identification of a measurement interval well
within the finest scale division. Every situation must be assessed individually.

2—2 DIGITAL DISPLAY AND ROUNDING OFF

Other aspects may also confuse the issue. Consider, for example, a piece of
equipment which gives a digital readout. If a digital voltmeter tells us that a
certain potential difference is 15.4 V, does it intend to imply that the value is
15.40000 . . . exactly? Clearly not, but what does it mean? That depends on
circumstances. If the instrument is made in such a way that it reads 15.4 V be-
cause the actual value is closer to 15.4 than it is to 15.3 or 15.5, then the
meaning is: this reading lies between 15.35 and 15.45. On the other hand, a
digital clock may be made in such a way that it changes its indication from
(09.00 to 09.01 at the time of 09.01. When we see it reading (09.00, then, we
know that the time lies between 09.00 and 09.01, a slightly different interpre-
tation from that appropriate to the digital voltmeter. Again, each situation must

be judged by itself.

These two examples of digital display illustrate a more general concept,
the inaccuracy inherent in the process of “rounding off.” Even without inaccu-
racy arising from limited ability to make measurements, a mere statement of a
numerical quantity can contain inaccuracy. Consider the statement

7= 3.14
We all know that this is not so because we can remember some, at least, of the
following numbers, 3.14159 . . . . So what can we mean by quoting  as

3.147 It can mean only that 7 has a value closer to 3.14 than it does to 3.13 or
3.15. Our statement is, therefore, that 7 lies between 3.135 and 3.145. This
range of possibility represents what is sometimes known as a “rounding-off er-
ror.” Such errors_can be small and unimportant, or they can become
significant. In a long calculation, for example, there is a chance that rounding-
off errors can accurnulate, and it becomes wise, especially in these days of
conveniently available calculators, to carry through the calculation more
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figures than one might think would be necessary. A similar rounding-off error
can appear in statements about measurement. We sometimes hear that some-
one has made a measurement on a scale which was “read to the nearest mil-
limeter” or some such phrase. This is not a very good way of reporting a mea-
surement because it obscures the actual value of the measurement interval. We
do, however, encounter such statements and, if we are obliged to deal with a
measurement quoted in that form, we can only assume that the scale division
quoted represents some kind of minimum value for the size of the measure-

ment interval.

2—3 ABSOLUTE AND RELATIVE UNCERTAINTY

By whatever means we have made a measurement, the final outcome should be
an interval which represents, to the best of our ability, the range inside which
the desired value lies. In the example we used first the experimenter might be
able to state with confidence no more than that the length of the notebook lay
between 29.4 and 29.6 cm. Although the only meaningful outcome of a mea-
suring process consists of such an interval or range, it is frequently desirable,
for purposes of description or further calculation, to rephrase the quoted value.
We take the interval 29.4~29.6 and rename it 29.5 + 0.1 cm. Although obvi- .
ously no more than a renamed expression of the original interval, the new form
does offer certain advantages. It gives us a central value, 29.5, which can be
used in further calculations. It also gives us a value, 0.1, called the
“uncertainty” of the measurement, by which we can judge the quality of the
measuring process and which can be used in separate calculations on uncertain-
ties. One disadvantage in this mode of expression is the return to a central
value, 29.5. Unless we remember clearly that only the complete quantity,

29.5 + 0.1, serves as an adequate statement of the answer, we may become ..

sloppy in making and reporting measurements and may forget the essential .
presence of the uncertainty. We should all make it an invariable practice to as-
sociate an uncertainty value with a reading, both at the time we make the mea-
surement, and subsequently, whenever the value is quoted or used in further
calculation.

Since the figure 0.1 cm represents the actual amount, or range, by
which the reading of 29.5 is uncertain, it is often called the “absolute uncer-
tainty” of the reading, and we shall consistently use this terminology. In addi-
tion, other aspects soon become important. How significant is an uncertainty of
*0.1 cm? When we are measuring the length of a notebook, it is significant to
a certain extent. If we are measuring the distance between two cities, an uncer-
tainty of £0.1 cm is probably completely insignificant. If, on the other hand,
we are measuring the size of a microscopic bacterium, an uncertainty of
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*0.1 ¢cm would make the measurement meaningless, For this reason, it is fre-
quently desirable to compare an uncertainty figure with the actual value of the i
measurement; by so doing the significance of the uncertainty can be realisti-
cally assessed. We define the ratio

absolute uncertainty

measured value !

relative uncertainty =

In the case of our example

relative uncertainty = + 0L _ 40003

29.5 i
This relative uncertainty is often quoted as a percentage, so that, in the present ’
case, the relative uncertainty would be *+0.3%. Such a quantity gives us a
much better feeling for the quality of the reading, and we often call it the
“precision” of the measurement. Note that the absolute uncertainty has the
same dimensions and units as the basic measurement (29.5 cm is uncertain by
0.1 cm), while the relative uncertainty, being a ratio, has no dimensions or

units and is a pure number.

2—4 SYSTEMATIC ERROR

The kind of uncertainty that we have been considering arises from naturally oc-
curring inadequacy in the measuring process. A different type of error can ap-
pear when something affects all the measurements of a series in an equal or a
consistent way. For example, a voltmeter or a micrometer caliper can have a
zero error, a wooden meter stick may have shrunk, a person may consistently
press a stopwatch button 75 sec behind the event, and so on. These errors are
termed “systematic errors,” a subclass of which are “calibration errors.” Be-
cause such systematic errors may not be immediately visible as one makes a
measurement, it is necessary to be vigilant and remember at all times the possi-
bility of their presence. Instrumental zeroes, for example, should automatically
be checked every time an instrument is used. Although it may be less easy to
check calibration, the_accuracy of electrical meters, stopwatches, thermome-
ters, and other such instruments should not be taken for granted and should be
checked whenever possible. Also, the presence on an instrument of a precise-
looking, digital readout with four or five supposedly significant figures should
not be taken as proof of precision and freedom from systematic error. Most of
a batch of electronic timers that our laboratory recently acquired for laboratory
teaching, which could supposedly measure time intervals with millisecond pre-
cision, turned out to have calibration errors as large as 14%. Do not be de-
ceived; view all measuring instruments with suspicion and check instrumental
calibration whenever possible.
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2-5 UNCERTAINTY IN CALCULATED QUANTITIES

In the preceding sections we have been concerned solely with the concept of
; uncertainty in a single measurement. It is rare, however, that a single measure-
ment ends the process. Almost invariably the result we desire is a combination
of two or more measured quantities or is, at least, a calculated function of a
single measurement. We might wish, for example, to calculate the cross-sec-
tional area of a cylinder from a measurement of its diameter, or its volume
from measurements of both diameter and length. The various measurements
will sometimes be of different types, as in a calculation of g from values of the
length and period of a pendulum. In these cases the presence of uncertainty in
the basic measurements will obviously entail the presence of uncertainty in the
final computed value. It is this final uncertainty that we now wish to calculate.
For the purposes of this section we shall assume that our uncertainties have the
character of ranges or intervals within which we are “almost certain” that our
answer lies. For the computed values we shall calculate intervals within which
we wish, once again, to be “almost certain” that our answer lies. That means
- that we must do our calculation for the “worst case” of combined uncertainties.
This is perhaps a pessimistic assumption, and we shall see later, in Chap. 3,
how the probabilities associated with various error combinations enable us to
make a more realistic and less pessimistic estimate. For the moment, however,
let us assume that we wish to calculate, from the uncertainties in the primary
values, the maximum range of possibility for the computed answer,

2—8 UNCERTAINTY IN FUNCTIONS OF ONE
VARIABLE ONLY

Consider a measured quantity x, with an uncertainty =38x, and consider a com-
puted result z to be a function of the variable x. Let

z = f(x)

This function enables us to calculate the required value z, from a measured
value xo. Moreover, the possibility that x can range from x, — 8x to xp + 6x
implies a range of possible values of z from zy — 8z to z; + 8z. We now wish
to calculate the value of 8z, The situation is illustrated graphically in Fig, 2-1,
in which, for a given f(x), we can see how the measured value Xo gives rise to
the computed result z,, and how the range *0x about x, produces a corre-
sponding rangé =8z about z,.

Before considering general methods of evaluating 8z it is instructive to
see how finite perturbations are propagated in simple functions. Consider, for
example, the function

z = x?
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_ _ z=f{x}
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Figure 2-1 Propagation of uncertainty from one variable to another.

If x can range between xo — 8x and x + 8x, then z can range between
zo — 0z and zy + &z, where
Zp * 6z = (xo * SX)Z
= x§ = 2xp8x + (8x)?

We can ignore (6x)%, since 8x is assumed to be small compared with xo, and
equate zp to x5, giving for the value of 8z

62 = ZXO(SX

This can more conveniently be expressed in terms of the relative uncertainty
62/ Zg.

& » 2x08x =9 _6_{

Zy x% Xo

Thus, the relative uncertainty of the computed result is twice that of the initial
measurement.

Although it is essential to bear in mind the nature of propagated uncer-
tainty, as illustrated by the use of finite differences, considerable simplification
of the formulation can be achieved using differential calculus.
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| 2-7 GENERAL METHOD FOR UNGERTAINTY
IN FUNCTIONS OF A SINGLE VARIABLE

In the preceding section the finite differences 8z and 8x are merely an expres-
sion of the derivative dz/dx. We can therefore obtain our value of §z by first
using standard techniques to obtain dz/dx in the form

& _ d(f)

dx dx (5 2"
and then writing |
8z = d/) ox (2-1)
dx

This is a relatively simple procedure, and it will work well in cases for which
the elementary, finite-difference approach would lead to algebraic complexity.
Thus, if :

x
T
then
dz _x*+1—x2x
dx (x2 + 1)?
1 =x?
(1 + x»?

and

I B %
(1 + x2)?

This calculation would have been very awkward by any other approach. Fur-

thermore, it gives 8z generally as a function of x and ox; any particular desired

value can be obtained by setting x = x,. Let us now use this technique to eval-
uate uncertainties for some common functions.

8z ox.

(a) Powers
Consider
z=x"
dz
— = pxri
dx
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The significance of this result becomes a little more obvious when expressed in
terms of the relative uncertainty. Thus,

oz ox

ZE L 2
z x

Thus, when evaluating powers, the relative uncertainty of the result is the rela-
tive uncertainty of the basic quantity multiplied by the power involved. This
will be valid for either powers or roots, so that precision diminishes as a quan-
tity is raised to powers and improves on taking roots. This situation must be
carefully watched in an experiment in which powers are involved. The higher
the power, the greater will be the need for high initial precision.

(b) Trigonometric Functions

We shall do only one example, since all the others can be treated in similar
ways. Consider

zZ = sinx
Here
dz ‘
ol COSs X
and

6z = (cos x) 8x

This is one case where the elementary method of inserting xo * 8x shows the
result more clearly. Using the approximation

cos &x = |
we obtain
8x = cos x sin &x

showing that the x in the preceding result is really sin 8x in the limit of small
angles. Only in the case of very large uncertainty would this difference be
significant, but it is best to understand the nature of the result. Clearly &x
should be expressed in radian measure. The result will normally have straight-
forward application when dealing with apparatus such as spectrometers.

(c) Logarithmic and Exponential Functions

Consider

z=logux

Wz i, o B -
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Here
d_ 1
dx x
and
0z = lax
X

The relative uncertainty can be calculated as usual. If

z = e
dz .
el
and
0z = e*bx

This is an important case, since exponential functions occur frequently in sci-
ence and engineering. These functions can become very sensitive to the expo-
nent when it takes values much over unity, and the uncertainty 6z may become
very large. This will be familiar, for example, to anyone who has watched the
current fluctuations in a thermionic diode that can result from quite small varia-
tions in filament temperature.

As stated earlier, the method can be easily applied to any function not
listed above by evaluating the appropriate derivative and using Eq. (2-1).

2—8 UNCERTAINTY IN FUNCTIONS OF TWO
OR MORE VARIABLES

If the result is to be computed from two or more measured quantities, x, y,
etc., the uncertainty in the result can, as was mentioned in Sec. 2-5, be re-
garded in two different ways. We could be as pessimistic as possible and sup-
pose that the actual deviations of x and y happen to combine in such a way as
to drive the value of z as far as possible from the central value. We would, in
this way, calculate a value for §z which gives the extreme width of the range
of possible z values. On the other hand we can argue that it is more probable
for the uncertainties in the basic measurements to combine in a less extreme
way, some making positive contributions to 8z and some negative, so that the
resulting 8z value is smaller than for the pessimistic assumption. This argu-
ment is valid, and we shall deal later with the question of probable uncertainty
in computed quantities. For the moment, however, let us calculate that value
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of 6z which represents the widest range of possibility for z. Such an approach,
if pessimistic, is certainly safe, since, if 8x, &y, etc., represent limits within
which we are “almost certain” the actual values lie, then the calculated 8z will
give those limits within which we are equally certain that the actual value of z

lies.

The most instructive initial approach uses the elementary substitution
method, and we shall use this for the first two functions.

(@) Sum of Two or More Variables

Consider
zZ=Xx+tYy
The uncertainty in z will be obtained from
2o £ 8z = (x * 8x) + (yo = &)

and the maximum value of 6z is obtained by choosing similar signs through—
out. Thus,

6z = 6x + &y

As might be expected, the uncertainty in the sum is just the sum of the individ-
ual uncertainties. This can be expressed in terms of the relative uncertainty,

bz _ bx + &y
z xty

but no increased clarification is achieved.
(b) Difference of Two Variables

Consider
z=x—y
As in the case above, 6z will be obtained from
Zo £ 8z = (xo * 6x) — (yo = Oy)

Here, however, we can obtain the maximum value of 8z by choosing the nega-
© tive sign for Oy, giving, once again,

6z = O0x + Oy
We can see from this equation that, when x, and yo are close together and

x — yis small, the relative uncertainty can rise to very large values. This is, at
best, an unsatisfactory situation, and the precision can be low enough to de-
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stroy the value of the measurement. The condition is particularly hazardous
since it can arise unnoticed. It is perfectly obvious that, if it were possible to
avoid it, no one would attempt to measure the length of my notebook by mea-
i suring the distance of each edge from a point a mile away and then subtracting
& the two lengths. However, it can happen that a desired result is to be obtained
by subtraction of two measurements made separately (two thermometers,
clocks, etc.), and the character of the measurement as a difference may not be
strikingly obvious. Consequently, all measurements involving differences
should be treated with the greatest caution. The way to avoid the difficulty,
clearly, is to measure the difference directly, rather than obtaining it by sub-
traction between two measured quantities. For example, if one has an appara-
tus within which two points are at potentials above ground of ¥; = 1500 V and
V. = 1510 V, respectively, and the required quantity is ¥, — Vi, only a very
high quality voltmeter would permit the values of ¥, and V; to be measured
with the exactness required to achieve even 10% precision in V2 — V;. On the
other hand, an ordinary 10-V table voltmeter, connected between the two
points and measuring V; — V; directly, will immediately give the desired result
with 2% or 3% precision. '

2-9 GENEF?AL METHOD FOR UNCERTAINTY
IN FUNCTIONS OF TWO OR MORE VARIABLES

The last two examples, treated by the elementary method, suggest that, once
again, the differential calculus may offer considerable simplification of the
treatment. It is clear that, if we have

/// z=f(x,y) |
// the appropriate quantity for calculating 8z is the total differential dz. This is
/ given by '
e of of
: = —dx +——d ~
dz P 3y ly (2-2)

We shall take this differential and treat it as a finite difference 8z that can be
calculated from the uncertainties 8x and 8y. Thus,

of of
—_ + ..
oz r» ox 3y Oy

and the derivatives df/dx and df/dy will normally be evaluated for the values,
Xo and yo, at which 8z is required. We may find that, depending on the function
[, the sign of 3f/dx or af/dy turns out to be negative. In this case, using our
pessimistic requirement for the maximum value of 8z, we should choose nega-
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tive values for the appropriate 8x or 8y, obtaining thereby a wholly positive
contribution to the sum,

(a) Product of Two or More Variables

Suppose

z = Xy
To use Eq. (2-2) we need the values of dz/dx and 9z/9y. They are
x_,

a3
£ - y and =
dy

ax
Thus, the value of 6z is given by
8z =y x + x Oy

The significance of this result is more clearly seen when it is converted to the
relative uncertainty

6z &x &

z X y
Thus, when the desired quantity is a product of two variables, its relative un-
certainty is the sum of the relative uncertainties of the components,

The most general case of a compound function, very commonly found in
physics, involves an algebraic product that has components raised to powers.
Let

7 = xayb
where a and b may be positive or negative, integral or fractional. In this case

the formulation is greatly simplified by taking logs of both sides before differ-
entiating. Thus,
‘ logz=alogx + blogy
whence, differentiating implicitly,
dz dx dy
—_— = q— + it
z X y
As usual, we take the differentials to be finite differences and obtain
) ' )
oz _ ox &y
z X y

Note that this process gives the relative uncertainty directly, and this is fre-
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quently convenient. If the absolute uncertainty 8z is required, it can be evalu-
ated simply by multiplying the relative uncertainty by the computed value zo,
which is normally available. This form of implicit differentiation still offers the
simplest procedure even when z itself is raised to some power. For, if the
equation reads
z2 = xy
it is unnecessary to rewrite it
g = x;/zyl/z
and work from there, because, by taking logs,
2logz=1logx + logy

whence

giving 8z/z as required.
{b) Quotients

These can be treated as products in which some of the powers are negative. As
before, the maximum value of &z will be obtained by neglecting negative signs
in the differential and combining all the terms additively.

If a function other than those already listed is encountered, some kind of
differentiation will usually work. It is frequently convenient to differentiate an
equation implicitly, thereby avoiding the requirement to calculate the unknown
quantity explicitly as a function of the other variables. For example, consider
‘the thin-lens equation

I 1

f o i
where the focal length £ is a function of object distance o and image distance 7,
the measured quantities. We can differentiate the equation implicitly to obtain

It is now possible to calculate df/f directly and more easily than by writing f
explicitly as a function of ¢ and i and differentiating. In this way we can pre-
pare a formula for the uncertainty into which all the unknowns can be inserted
directly. Make sure that appropriate signs are used so that all contributions to
the uncertainty add positively to give outer limits of possibility for the answer.
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If the function is so big and complicated that we cannot obtain a value for
0z in general, we can always take the measured values, xo, Yo, €tc., and work
out zo. We can then work out two different answers, one using the actual, nu-
merical values of xo + 8x, yo + 8y (or yo — 8y if appropriate), etc., to give
one of the outer values of z and the other using xo — 8x, etc. These two values
will correspond to the limits on z, and we shall know the value of 5z.

2—10 COMPENSATING ERRORS

A special situation can appear when compound variables are involved. Con-
sider, for example, the well-known relation for the angle of minimum devia-
tion D,, for a prism of refractive index » and vertical angle A:
sin 3(A + D)
n= .
sin 5A

If A and D,, are measured variables with uncertainties 8A and 8D,,, the quan-
tity n will be the required answer, with an uncertainty &». It would be falla-
cious, however, to calculate the uncertainty in A + D, then in sin 1A + D,),
and combine that with the uncertainty in sin 1A, treating the function as a quo-
tient of two variables. This can be seen by thinking of the effect on # of an in-
crease in A. Both sin 5(A + D,,) and sin 14 increase, and the change in » is not
correspondingly large. The fallacy lies in applying the methods of the preced-
ing sections to variables that are not independent (e.g., A + D,, and A). The
cure is either to reduce the equation to a form in which the variables are all in-
dependent, or else to go back to first principles and use Eq. (2-2) directly.
Cases which involve compensating errors should be watched carefully, since
they can, if treated incorrectly, give rise to errors in uncertainty calculations

that are hard to detect.

2—11 SIGNIFICANT FIGURES

Since computations tend to produce answers consisting of long strings of num-
bers, we must be careful to quote the final answer sensibly. If, for example,
we are given the voltage across a resistor as 15.4 = 0.1 volts and the current
as 1.7 = 0.1 amps, we can calculate a value for the resistance. The ratio V/I
comes out on my calculator as 9.0588235 ohms, Is this the answer? Clearly
not. A brief calculation shows that the absolute uncertainty in the resistance is
close to 0.59 ohms. So, if the first two places of decimals in the value for the
resistance are uncertain, the rest are clearly meaningless. A statement like
R = 9.0588235 = 0.59 ohms is, therefore, nonsense. We should quote our re-
sults in such a way that the answer and its uncertainty are consistent, e.g.,
R = 9.06 = 0.59 ohms.
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But is even this statement really valid? Remember that the originally
quoted uncertainties for V and I had the value =0.1, containing one significant
figure. If we did now know these uncertainties any more precisely, we have no
right to claim two significant figures for the uncertainty in R. Our final, valid,
and self-consistent statement is, therefore, R = 9.1 = 0.6 ohms. Only if we
had real reason to believe that our original uncertainty was accurate to two
significant figures could we lay claim to two significant figures in the final un-
certainty and a correspondingly more precisely quoted value for R. In general
terms we must make sure that our quoted values for uncertainty are consis-
tent with the precision of the basic uncertainties and that the number of
quoted figures in the final answer is consistent with the uncertainty of that final
answer. We must avoid statements like z = 1.234567 = 0.1 or z =
1.2 £ (0.000001.

PROBLEMS

1. I use my meter stick to measure the length of my desk. I am sure that the length is
not less than 142.3 cm and not more than 142.6 cm. State this measurement as a
central value * uncertainty. What is the relative uncertainty of the measurement?

2. I read a needle-and-scale voltmeter and ammeter and assess the range of uncer-
tainty visually. I am sure the ammeter reading lies between 1.24 and 1.25 A and
the voltmeter reading between 3.2 and 3.4 V. Express each reading as a central
value * uncertainty and evaluate the relative uncertainty of each measurement.

3. My digital watch gives a time reading as 09:46. What is the absolute uncertainty of
the measurement?

4. If I can read a meter stick with absolute uncertainty £ 1 mm, what is the shortest
distance that I can measure if the relative uncertainty is not to exceed (a) 1%,
(b) 5%7

5. 1 use a thermometer graduated in 1 degree Celsius to measure outside air tempera-
ture. Measured to the nearest 1 degree, yesterday’s temperature was 22.4° Celsius
and today’s is 24.8° Celsius. What is the relative uncertainty in the temperature
difference between yesterday and today?

6. The clock in the lab has a seconds hand that moves in one-second steps. I use it to
measure a certain time interval. At the beginning of the interval it reads 09:15:22
(hours:minutes:seconds) and at the end it reads 09:18:16. What is the relative un-
certainty of the measured time interval?

7. For the desk mentioned in Problem 1 I measure the width, and I am sure the mea-
surement lies between 78.2 cm and 78.4 cm. What is the absolute uncertainty of
the calculated area of the desk top?

8. In measuring the resistance of a resistor, the voltmeter reading was 15.2 = 0.2V
and the ammeter reading was 2.6 *= 0.1 A. What is the absolute uncertainty of the
resistance calculated using the equation R = V/I?



CHAP.2 PROBLEMS 23

9.

10.

11.

12,

13.

14.

A simple pendulum is used to measure the acceleration of gravity using
T = 27VIi/g. The period T was measured to be 1.24 * 0.02 sec and the length to
be 0.381 = 0.002 m. What is the resulting value for g with its absolute and rela-
tive uncertainty?

An experiment to measure the density, d, of a cylindrical object uses the equation
d = m/wril, where

m = mass = 0.029 % 0.005 kg

= radius = 8.2 = 0.1 mm

{ = length = 154 = 0.1 mm

What is the absolute uncertainty of the calculated value of the density?
The focal length, f, of a thin lens is to be measured using the equation
1/o + 1/i = 1/f, where

o = object distance = 0,154 £ 0.002 m
i = image distance = 0.382 = 0.002 m

What is the calculated value for focal length, its absolute uncertainty, and its rela-
tive uncertainty?

A diffraction grating is used to measure the wavelength of light using the equation
d sin 8 = A. The value of 6 is measured to be 13° 34’ =+ 2’, Assuming that the
value of d is 1420 X 107% m and that its uncertainty can be ignored, what are the
absolute and relative uncertainties in the value of A?

A value is quoted as 14.253 = 0.1. Rewrite it with the appropriate number of
significant figures, If the value is quoted as 14,253 % 0.15, how should it be writ-
ten?

A value is quoted as 6.74914 * 0.5%. State it as a value = absolute uncertainty,
both with the appropriate number of significant figures.

1=

kY



3

Statistics
of Observation

3—1 STATISTICAL UNCERTAINTY

In the preceding chapter we considered measurements in which the uncertainty
could be estimated by personal judgment. In these, supposing that we have
judged the situation accurately, repeated measurements should give consistent
answers. Sometimes, however, repeated measurements give clearly different
answers. For example, if we are using a Geiger counter and scaler to measure
the activity of a radioactive source, and we decide, with given geometry, to
obtain the number of counts in a 10-second interval, we would find that the re-
sults obtained by counting in successive 10-second intervals are not the same.
We can encounter the same situation in measurements that involve visual judg-
ment. If, for example, we wish to find the image formed by a thin lens, we
may be unable to judge the position of the image accurately enough to obtain
repeatedly the same reading on a good, finely divided distance scale. Whether
the fluctuation is intrinsic to the system under investigation (as in the radioac-
tive source, where the fluctuation arises from the basic nature of radioactive
decay) or arises from our difficulty in making a measurement, we must find out
how to make sensible statements about measurements that show such

fluctuations.

What kind of statement will it be possible to make? No longer can we
make such statements as we made earlier having the form “I am virtually cer-
tain that the answer lies within the interval . . . .” In fact, apart altogether

24
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from the impossibility of obtaining “right” answers, we shall find out that the.
difficulty lies not so much in constructing sensible answers as in knowing the
sensible questions to ask. We shall discover that the only sensible questions in-
volve, as before, intervals along our scale of values—this time, however, in-
terpreted in terms of probabilities instead of certainty. Our search for a solution
will be fairly lengthy, but at the end the answer will turn out to be simple and

elegant.

To start our search, let us go back to the basic situation. Let us assume
that we have made a single measurement and, in order to check our work, that
we have made the measurement a second time and obtained a different answer.
What are we supposed to do? We have no way of saying that one answer is
“right” and the other “wrong.” Which one would we choose to be “right”? In
response to this ambiguity the natural reaction would be to try a third time,
hoping, perhaps, that the third reading will confirm one or other of the first
two. Very likely it will not be so obliging and will simply add to the confusion
by supplying a third possibility. Faced with growing complexity, we could de-
cide to keep on making measurements to see what happens. Let us suppose
that our curiosity has prompted us to make a substantial number of repeated
measurements, say 100, and we now ask: what is the answer? As was men-
tioned earlier, it is more significant to ask: what is the question? That depends
very much on the use to which we wish to put the measurements. A physicist
measuring the position of an optical image may be seeking something he
would like to consider as the “right” answer. A person measuring the activity
of a radioactive source may wish to use it in a way that requires him to know
the number of counts he will obtain in a certain 10-second interval tomorrow.
A sociologist counting political opinions wishes to predict the outcome of the
next election, etc. There is no single question and no unique answer. The treat-
ment we give our fluctuating numbers depends on circumstances. Let us now
consider some of the possibilities.

3-2 HISTOGRAMS AND DISTRIBUTIONS

Let us assume that we have made 100 measurements of some quantity and that
we must now report our results. The first response to the question, “What did
you obtain?” is the rather feeble reply, “I made the measurement 100 times and
here are the 100 answers.” This is perhaps free of error but is hardly helpful.
Our audience will find it difficult to make any sense out of a plain list of num-
bers, and questions will naturally arise, such as: are there any regularities in
the numbers, do any appear more frequently than others, etc.? In order to show
the characteristics of the measurements more clearly, some kind of graphic dis-
play would clearly be helpful.
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One common mode of presentation is the histogram. To construct this di-
agram we divide the scale along which the measurements are spread into inter-
vals, and we count the readings that fall within each interval. We then plot
these numbers on a vertical scale against the intervals themselves. It is conven-
tional to use a bar diagram to indicate the number of readings, and the result
will be similar to Fig. 3—1. At once we improve our comprehension of the
measurements enormously, because we can see at a glance how the values are
distributed along the scale, This distribution is the key to satisfactory interpre-
tation of the measurements. Usually we find that the readings tend to occur
more frequently in the middle of the range, and, if this is so and we are unable
to make any other sensible statement, we can always content ourselves with
the simple assertion that the observations have “central tendency.” This may
suffice, and when we have drawn the histogram we may be able to stop. Many

Table 1
85 109 114 121 127 131
92 109 114 121 127 132
a6 110 114 122 127 133
97 110 115 122 127 134
a7 111 116 122 128 134
97 1M 116 122 128 134
100 111 116 122 128 134
101 111 117 123 128 135
11 111 . 117 123 128 136
102 112 118 123 128 137
102 112 118 ) 123 130 137
103 112 119 123 130 137
103 113 119 124 130 144
106 113 120 124 130 148
106 113 120 124 130 149
106 113 120 125 130
107 113 120 125 131
108 113 121 125 131
108 114 121 126 131
40 T
30+
oy
5
:., 20
.
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Value

Figure 3-1 A set of observations and its histogram,
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results from measurement processes are presented simply by offering the his-
togram; the reader can view the distribution and draw his own conclusions.

3—3 CENTRAL VALUES OF DISTRIBUTIONS

Frequently, however, we wish to go further and, as a substitute for the whole
histogram, find some shorthand way of describing the distribution without ac-
tually showing the whole diagram. We can seek answers, therefore, to ques-
tions such as: what single number best characterizes the complete group of ob-
servations? There are several candidates for such designation, and we choose
one on the basis of the future use of the information. The various possibilities

are:
fa) Mode

Most distributions have a peak near the center: If this peak is well defined, the
value on the horizontal scale at which it occurs is called the mode of the distri-
bution. Whenever we wish to draw attention to such central concentration in
our measured values, we quote the modal value. Sometimes a distribution will
show two peaks; we call it a bimodal distribution and quote the two modal o
values. :

(b} Median

If we place all our readings in numerical order and divide them in the middle
into two equal parts, the value at which the dividing line comes is called the
median. Since it is obvious that areas under distribution graphs represent num-
bers of observations (the left-hand bar in Fig. 3-1 represents 5 observations,
the second from the left represents 9, so that the two together represent 14, and ;
so on}, the median is that value at which a vertical line divides the distribution
into two parts of equal area. The median is frequently quoted in sociological
work; people talk about median salaries for certain groups of employees, etc. :

(c} Mean

The third of the commonly quoted numbers is the familiar arithmetic average i
or mean. For a group of N observations, x;, the mean ¥ is defined by ‘

— E X i
1= (3-1) J

We shall discover that, for our purposes, the mean is the most useful of the
three quantities we have defined.
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Notice that, for a symmetrical distribution, the mean, median, and mode
all coincide at the center of the distribution. If, on the other hand, the distribu-
tion is not symmetrical, each will have a separate value. For the histogram
shown in Fig. 3—1, the values of the mean, median, and mode are shown in
Fig. 3-2, which illustrates their relationship to the distribution. If the distribu-
tion is markedly asymmetric, the difference between the mode, median, and
mean can be substantial. Consider, for example, the distribution of family in-
come in a country. The presence of the millionaires, although few in number,
has an effect on the mean that counterbalances many members of the popula-

30 -

20 40 6 8 100 12| 140 160

Mean 119

Median 120

Mode 126

Figure 3-2 The relationship between a histogram and its mean, median,
and mode.
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tion at the low end of the salary scale. The mode and the mean thus differ sub-
stantially. This example illustrates the care required in interpreting quoted
statistics; people who quote statistics frequently do so in the way that best suits
their particular purpose,

3—-4 THE BREADTH OF DISTRIBUTIONS

Let us now turn to the question: to what extent is our chosen number represen-
tative of the distribution as a whole? That is, how reliable is it to use a single
number to substitute for a whole distribution? At the present stage we have no
justification to offer for the procedures that will be described. We shall rely,
instead, on an intuitive feeling that, the broader is the distribution, the less
significance we can ascribe to any one of the three central values. On the other
hand, the narrower the distribution, the more we feel entitled to confidence in
the mean, mode, or median as significant quantities for the distribution.

Let us, therefore, construct a quantity that will be a measure of the
breadth of the distribution. We could invent many such quantities, but, for rea-
sons that need not concern us at the moment, we shall define a quantity that is
almost universally used. We define the standard deviation of the distribution,

S, to be
_ 2 (f - x,')z
S = \/ N (3-2)

The definition is to some extent arbitrary, for, in defining a measure of the
breadth of the distribution, we could have chosen other powers for the quantity
(X — x;), and we could have chosen other denominators. There are, however,
reasons for these choices; these reasons and the significance of the standard de-
viation will become clear shortly,

We can pause at this stage to summarize the progress so far. If we have
made repeated measurements of a quantity and wish to state the result in nu-
merical terms, we can do a number of things: (a) we can show the histogram,
(b) we can quote the mode, median, or mean as a measure of the location
of the distribution, and (c) we can quote the standard deviation as a measure of
the confidence we can place in the results. We sometimes leave the outcome
of a measuring process in this form; the quantities involved are universally un-
derstood, and the procedure is acceptable.

For our present purpose, however, we seek more detailed, numerical in-
terpretation of the quoted values.
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3-5 SIGNIFICANCE OF THE MEAN AND STANDARD
DEVIATION

In this and the following sections we shall, for reasons that will become clear,
ignore the mode and median and restrict ourselves to numerical interpretation
of the mean and the standard deviation. Since the presence of random
fluctuation has denied us the opportunity to identify a realistic interval within
which we can feel certain our answer lies, we must alter our expectations of
the measuring process. As we have said before, it is not so much a matter of
obtaining sensible answers to questions as of knowing the sensible questions to
ask. Specifically, of course, it is not sensible to ask: what is the right answer?
It is not even sensible to ask: having made one hundred observations of a quan-
tity, what shall I obtain when I make the measurement the next time? The only
sensible questions involve not certainty but probability, and several different
questions about probabilities are possible.

We could ask, for example: what is the probability that the 101st reading
will fal]l within a certain range on our scale of values? That is a sensible ques-
tion, and sensible answers can easily be imagined. If, for example, of our 100
original readings, a certain fraction of the values fell within that particular
range, we might feel justified in choosing that fraction as the probability we
seek. This would not be an unrealistic guess, and we could attempt a standard-
ized description of our distribution by quoting the fraction of the total number
of readings that fall within a specified interval, such as x = . This would sat-
isfactorily convey information about our set of readings to other people, but a
major problem appears when we discover that our answers for probabilities are
specific to our particular histogram. If we were to make another series of 100
readings, holding all the conditions the same as they were before in the hope of
obtaining the same histogram, we would be disappointed. The new histogram
would not duplicate the first exactly. It might have similar general characteris-
tics with respect to location and breadth, but its detailed structure would not be
the same as before, and we would obtain different answers to questions about
probabilities.

How, then, are we going to find answers to our questions that have some
kind of widely understood numerical significance? One solution is to abandon
the attempt to describe our particular histogram and to start talking about
defined, theoretical distributions. These may have the disadvantage of uncer-
tain relevance to our particular set of observations, but there is the enormous
advantage that, since they are defined, theoretical constructs, they have proper-
ties that are definite, constant, and widely understood. Many such theoretical
distributions have been constructed for special purposes, but we shall restrict
ourselves to one only, the Gaussian or “normal” distribution.
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We use the Gaussian distribution to interpret many kinds of physical
measurement, partly because the mechanical circumstances of many physical
measurements are in close correspondence with the theoretical foundations of
the Gaussian distribution, and partly because experience has shown that Gaus-
sian statistics do provide a reasonably accurate description of many real events.
For only one common type of physical measurement is another distribution
more appropriate; in counting events like radioactive decay we must use a dis-
tribution called the Poisson distribution, but, even for it, the difference from
Gaussian statistics becomes significant only at low counting rates. Further in-
formation about Poisson statistics will be found in books describing experi-
mental methods in nuclear or high-energy physics. Apart from these special
cases, we can feel relatively confident that Gaussian statistics can be usefully
applied to most real measurements. We should, however, always remember
that, unless we actually test our measurements for correspondence with the
Gaussian distribution, we are making an assumption that Gaussian statistics are
applicable, and we should remain alert to any evidence that the assumption

may be invalid.

3—6 GAUSSIAN DISTRIBUTION AND SAMPLING

Even if, to use it successfully, we need not know very much about the origins
of the Gaussian distribution, it is interesting to know why its derivation makes
“it particularly relevant to many physical measurements. The Gaussian distribu-
tion can be derived from the assumption that the total deviation of a measured
quantity, x, from a central value, X, is the consequence of a large number of
small fluctuations that are of random occurrence. To construct a simple model
of such a situation, let us suppose that there are m such contributions to the to-
tal deviation, each of equal magnitude a and equally likely to be positive or
negative. If we repeat the measuring process many times, we shall obtain a set
of values that will range from X + ma, for a reading in which all the
fluctuations happened to be positive simultaneously, to X — ma, if the same
happened in the negative direction. For such random summation of* positive
and negative quantities (as in the “random walk”), we can prove that the most

. probable sum is zero, meaning that the most common values of x are in the
vicinity of X. The distribution curve, therefore, has a peak in the middle, is
symmetrical, and declines smoothly to zero at x = X + ma and x = X — ma.
If this concept is taken to the limiting case in which an infinite number of
infinitesimal deviations contribute to the total deviation, the curve has the form
shown in Fig. 3-3. Treating the curve solely from the mathematlcal point of
view for the moment, its equation can be written

3 = Ce_hz{x—x) (3_3)
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Figure 3-3 The Gaussian distribution curve.

Here the constant C is a measure of the height of the curve, since y = C for
¥ = X at the center of the distribution. The curve is symmetrical about x = X
and approaches zero asymptotically. The quantity h obviously governs the
width of the curve, since it is only a multiplier on the x scale. If 4 is large, the
curve is narrow, and high in relation to its width; if small, the curve is low and
broad. The quantity 4 clearly must be connected with the standard deviation,
o, of the distribution, and it can be shown that the relationship is

1
g = —= 3-4
V2 h (3-4)
(We shall use Latin letters, e.g., ¢ for standard deviation, for quantities associ-
ated with finite sets of actual observations, and Greek letters, such as o, when
referring to defined distributions or, as described in Sec. 3=7, to a “universe”
of observations.)

Now that we have a definite equation for the distribution, ail the original
ambiguity about interpreting the standard deviation in terms of probability dis-
appears, and we have definite, unique, and permanent values. For example,
the area enclosed within the interval X * o for a Gaussian distribution is 68%
and within the interval X % 2a it is 95%, and this is so for all Gaussian distri-
butions. The relation between the o values and areas on the distribution curve
is shown in Fig. 3-4 by the lines drawn vertically at intervals of 1o and 20
from the central value. It is very comforting to have such definite numbers, be-
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y

2g 1o X 1o 20

Figure 3-4 The relationship of 1o and'20' limits to the Gaussian distribu- -
tion.

cause we can say definitely that any particular value in a Gaussian set has a
68% chance of falling within the interval X * o and a 95% chance of falling
within X & 20. A more extensive account of the mathematical properties of
the Gaussian distribution will be found in Appendix 1.

3-7 RELATION BETWEEN GAUSSIAN
DISTRIBUTIONS AND REAL OBSERVATIONS

The results given in the preceding section provide useful, precise methods for
interpreting means and standard deviations, but a problem arises when we start
applying such thoughts to real measurements. Numbers like 68% and 95%
refer to a theoretical construct, the Gaussian distribution, and all we have is
one, or at most a few, real measurements of our desired quantity, We have, at
first, no way of knowing which Gaussian distribution, with attached values of
X and o, is appropriate to our observations. So what are we to do? The answer
lies in a concept which provides a bridge between the world of theoretical con-
structs and the world of real measurements. We invent, for a piece of appara-
tus or a measuring process, the concept of the infinite set of measurements
which could be made with it. Of course, for rather obvious reasons, this
infinite set of measurements will never be made, but the concept enables us to
interpret our real measurements. The construct is called the “universe” or
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“population” for that particular measurement. Once we have made, say, 100
measurements with a particular apparatus, we have a tendency to feel that
nothing exists but our 100 values. We must now invert our thinking and view
our set of measurements as a “sample” of the infinitely large universe or popu-
lation of measurements that could be made. The universe, however, is perma-
nently inaccessible to us; we shall never know the universe distribution or its
mean or its standard deviation. Our task will be to construct inferences about
these quantities from the definitely known properties of our sample.

We shall do this on the basis of some assumptions. First, we shall as-
sume that the universe distribution is Gaussian, and we shall call the universe
mean X and the universe standard deviation o. This assumption enables us to
make statements such as: if we make just one measurement with our equip-
ment, that one measurement has a 68% chance of falling within X = o and a
95% chance of falling within X & 2¢. This seems like an encouragingly exact
and explicit statement, but it suffers from an overwhelming defect; we do not
(and never shall) know the values of X and o. In other words, having made
only one observation of a quantity that is subject to random fluctuation, we
have gained practically nothing. We can say only that our value has a 68%
chance of falling within something of somewhere, which is not too helpful,
Our only hope lies in obtaining some information, even if uncertain, about the
universe distribution. As we have already mentioned, we are never going to be
able to determine the universe distribution exactly, because that would require
an infinite number of readings. We can only hope that, if we repeat our mea-
suring process to obtain a sample from the universe, that sample will enable us
to make some estimate of the universe parameters.

Since we are making the basic assumption that the universe distribution is
a mathematical, defined function (whether Gaussian or some other, equally
well-defined distribution), we can evaluate mathematically the properties of
samples with respect to those of the universe of single observations. We shall
simply state these properties of samples without proof. The reader who is curi-
ous about the mathematical derivation of these results is encouraged to turn to
the standard texts on statistics, in which sections dealing with sampling theory
will be found.

The properties of samples become clear if we consider the concept of re-
peated sampling. Consider that, with a certain piece of apparatus, we make
100 observations. This will be our first sample; let us calculate its mean and
standard deviation and record them. Now let us make another set of 100 obser-
vations and record for it the mean and standard deviation. Let us continue such
repetition until we have an infinite number of samples, each with its own mean
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and standard deviation, and let us then plot the distribution curves of the sam-
ple means and of the sample standard deviations. Of course we shall never
carry out a process like this with actual observations but, knowing the mathe-
matical function for our original universe of single readings, we can simulate
such repeated sampling mathematically, and so derive the properties of the
samples in comparison with those of the original universe of single readings.
The results of such calculations of the distribution of sample means and sample
standard deviations are shown in Fig. 3-5 and Fig. 3-6 and they will be de-
scribed in the following sections,

" Dbservaticns taken singly

Means of samples

Frequency

Figure 3.5 Distribution curve of single observations and sample means.
{Note that the vertical scale for the two curves is not the same. They have
been plotted with a common peak value solely for purposes of illustration. )

3-—8 SAMPLE MEANS AND STANDARD DEVIATION
OF THE MEAN

If the universe destribution of single readings is Gaussian, the theory of sam-
pling shows that the distribution of sample means is also-Gaussian. In addition,
the distribution of sample means has two other very important properties. First,
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Frequency

g 5

Figure 3-6 The distribution of sample standard deviations.

it is centered on X, the center of the original distribution of single readings;
second, it is narrower than the original distribution. This narrowness is very
significant, because it demonstrates immediately the improvement in precision
that comes from samples as opposed to single readings; the means of samples
cluster more closely around the universe mean than do single readings. The re-
duced scatter of sample means is represented by a very important quantity, the
standard deviation of the distribution of sample means. This quantity is called
the standard deviation of the mean and its value is

a
Om \/N (3 5)
where N is the number of readings in the sample. T hus, a particular sample
mean has a 68% chance of falling within the interval X * on and a 95%
chance for the interval X =+ 20.. These intervals are smaller than the corre-
sponding intervals for single readings, and they supply a numerical measure of
the improved precision that is available from sampling.

Note that the statement about sample means, although precise, still does
not help us very much, because it still involves the unknown quantities X and
o. The resolution of this difficulty and the significance of the standard devia-
tion of the mean will become clear very soon. In the meantime let us turn our
attention briefly to the other important property of samples, the distribution of
sample standard deviations.
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3-9 SAMPLE STANDARD DEVIATION

The sample standard deviations also fall on a Gaussian distribution, the center
of which is the universe standard deviation, o. The distribution is illustrated in
Fig. 3-6. As will become clear in a moment, however, the variance of the
sample standard deviations will not concern us as much as the variance of sam-
ple means, and we shall postpone to Sec. 3—~11 further discussion of the vari-
ance of sample standard deviations.

310 APPLICATION OF SAMPLING THEORY TO REAL
MEASUREMENTS |

The sample properties which we have just presented are very interesting, but
how do they help us when we do not have access to the actual distributions, ei-
ther for sample means or sample standard deviations? We have our lone sam-
ple with its mean and standard deviation, and no idea how they relate to the
universe values. Our problem, therefore, is to find a connection between the
theoretical results and the sample properties that allows us to infer the universe
properties from the sample values. We cannot expect, obviously, to obtain ex-
act information. In addition, we must make one basic, obviously imprecise, as-
sumption. We assume that our single value, the sample standard deviation,
provides us with a value for the universe standard deviation. In fact it can be
proved that the “best estimate” of the universe standard deviation is given by

the quantity
_ 2 (35 - xf)z
S =1/ N =1 (3-6)

This quantity is only slightly different from our original value for the standard
deviation of a set of observations. The N in the denominator of the original ex-
pression has been replaced by N — 1, and the difference between the two
quantities, obviously, is significant only for small values of N. In the future,
when we talk about a sample standard deviation, we shall assume that we are
using the equation in the new form and that we are really talking about the
“best estimate” of the universe value o.

Accepting our sample standard deviation as the best estimate of o, we are
now able to make a definite statement about our single sample. We can -
rephrase Eq. (3-5) and define :

S
S = —F7= 3-7
VN G-
as our standard deviation of the mean, now a known quantity obtained from
our real sample. We can now say: our sample mean % has a 68% chance of
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falling within X = S,, and a 95% chance of falling within X = 2§,,. This is a
statement which is close to what we want, but it is not yet completely satisfac-
tory. It tells us something about a quantity that we know, X, in terms of a
quantity that we do not know, X. We really want the statement to be the other
way around; we want to be able to make an assertion about our unknown, X, in
terms of a quantity, ¥, of which we do know the value. Fortunately, it is possi-
ble to prove that the above statement about probabilities can be inverted to
yield our desired result. We obtain thereby the statement toward which we
have been working ever since we started our discussion of the statistics of
fluctuating quantities. Our final statement is: there is a 68% chance that the
universe mean, X, falls within the interval X = §,, and a 95% chance that it
falls within the interval X % 2S,. This is now, finally, a statement about the
unknown quantity, X, in terms of wholly known quantities, X and S,.. Along
our scale of x values we now have a real and known interval between X — S,
and ¥ + S, and we know that there is a 68% chance that our desired quantity
X lies within this interval.

This statement provides us with the answer we have been seeking and
brings us as close as we can come to exact information about the unperturbed
value of our measured quantity. It is worth becoming familiar with the argu-
ments that have been given in the preceding sections; there is more to measure-
ment than simply making a few measurements and “taking the average” just
because it seems to be the right thing to do.

3-11 EFFECT OF SAMPLE SIZE

In any sampling process, clearly, the larger the sample, the more precise will
be our final statements. Even though the precision of a mean value increases
only as the square root of the number of observations in the sample [Eq.
(3-5)], it does increase, and larger samples have more precise means. There
may, however, be limitations of time or opportunity, and we cannot always
obtain samples of the size we would like. Usually a compromise must be
sought between the conflicting demands of precision and time, and good exper-
iment design will incorporate this compromise into the preliminary planning.
Nevertheless, it may-occasionally be necessary to content ourselves with small
samples. In this undesirable eventuality we should be aware of the magnitude
of the resulting loss of precision. There is, first, the influence on the value of
the standard deviation of the mean; the smaller N is, the larger will be the
value of S, and the longer the interval on the x scale that has the 68% chance
of containing the universe value X. Second, we must, for small samples, place
declining faith in our use of the sample standard deviation S as the best esti-
mate of the universe value o. To illustrate this, recall the distribution curve for
sample standard deviations that was shown in Fig. 3-6. It is worth asking:
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given the existence of this distribution, how good is our “best estimate” of the -
universe standard deviation, and how does it vary with sample size? The an-

swer must be based on the width of the distribution of sample standard devia-

tions, and so we must calculate the standard deviation of this distribution. It is

called the standard deviation of the standard deviation. (This process could

obviously go on indefinitely but, thankfully, we shall stop at this stage.) The

value of the standard deviation of the standard deviation, calculated mathemat-

ically from the equation of the Gaussian distribution, is

Oy = ——o— (3-7)
VAN - 1 |

The breadth of the distribution of sample standard deviations is thus related to
its central value o by the numerical factor 1/V2(N — 1). As one might ex-
pect, therefore, the accuracy of our sample standard deviation as the best esti-
mate of the universe value is dependent on the sample size. For example, with
a sample size of 10, Eq. (3-8) shows that our S value from the sample has a
68% chance of falling within a range of +o/V18, approximately *g/4,
about the universe value o. Correspondingly, the interval that has a 95%
chance of containing our sample mean is as wide as ¢/2 about the universe
value o. This does not represent high precision of measurement. We have,
therefore, confirmation of the wamning given earlier: statistical exercises with
small samples should be undertaken only when no alternative exists. In order
to provide an overall feeling for the reliability of o estimates from samples of
differing size, Table 3-1 contains some typical values of V2(N — 1) for vari-

ous values of N.

TABLE 3-1 Accuracy of o Estimates
from Samples of Varying Size

68% Confidence 95% Confidence
N V(N — 1) N 20N - 1)
2 i.4 2 0.7
3 2.0 3 1.0
4 2.4 4 1.2
5 2.8 5 i4
6 3.1 6 1.6
7 3.4 7 1.7
8 3.7 8 1.8
9 4.0 9 2.0
10 4.2 10 2.1
15 5.2 i5 2.6
20 6.1 20 3.2
50 9.8 50 4.9

100 14.1 100 7.0
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These values are illustrated in Fig. 3-7 for N = 3, N = 10, and N =
100. The 1o/ limits are marked on these curves, showing, for various sam-
ple sizes, the intervals within which there is a 68% probability that our single
sample standard deviation lies. For values of N less than about 10, it is clear
that the intervals for 68% or 95% probability become so large in comparison
with the central value that it is almost pointless to atterpt an estimate of ¢ It
iy is, therefore, rarely worth attempting any kind of statistical analysis with sam-
b ples containing fewer than about 10 observations. In any case, when reporting
the outcome of statistical work, it is essential to quote the sample size. If we
intend our values for the mean and standard deviation of the mean to be inter-
preted in accordance with the 68% and 95% prescription, we must give our
reader the opportunity to judge the accuracy of our estimates.
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3—12 STANDARD DEVIATION OF COMPUTED
VALUES

In Chap. 2 we considered the uncertainty of computed values z, and we as-
sumed that the uncertainty of the basic measurements constituted intervals
within which we were almost certain that the values lay. We calculated the
maximum range of variability of the computed answer on the pessimistic as-
sumption that the errors in the various measured values combined, in a “worst-
case” fashion, to drive the computed answer as far away from the central value
as it can go. We have already suggested that this represents an unrealistically
pessimistic approach and that a more useful quantity would be a “probable”
value for 8z based on the various probabilities associated with deviation of the
basic quantities x, y, etc. from their central values. The limits given by this
quantity will, naturally, be smaller than * &z, but we hope to find actual, nu-
merical significance for them. Such statistical validity will be available only if
the uncertainties in x and y have statistical significance, and we shall assume in
the following calculations that the measurements of x and y have been
sufficiently numerous to justify a calculation of the standard deviaions S, and
Sy. We hope now to calculate a value for S, that will have the same significance
for z values as S, and S, had for x and y.

We must, however, first inquire what we mean by .. We assume that the
measurement has taken the form of pairs of observations x, y that were ob-
tained by repetition of the observing process under identical conditions (for ex-
ample, the current through and the potential across a resistor, measured for the
purpose of calculating the resistance R). Each pair of observations will provide
a value of z, and, if repetition yielded N pairs, we shall have a set of N values
of z that are distributed in accordance with the fluctuations in the basic mea-
surements. The quantity we require, S, is the standard deviation of this set of z
values. These individual values of z may never be calculated individually, be-
cause a simpler mode of calculation exists. We can calculate the means ¥ and
y, of the sets of x and y values and obtain 7 directly using the assumption (valid
if S., Sy, and S, are small compared, respectively, with X, ¥, and z) that

z = fx,5)
Nevertheless, that distribution of z values provides the significance of the S,
that we are about to calculate.

If we assume that the universes of the x, y, and z values have a Gaussian
distribution, the quantity o (of which we are about to calculate the best esti-
mate in terms of various S values) will have the usual significance; i.e., any z
value will have a 68% chance of falling within % o; of the central value. As be-



42 STATISTICS OF OBSERVATION CHAF’. 3

fore, let
z = fx, y)

and consider perturbations &x and 8y which lead to a perturbation 8z in the
computed z value. The value of &z will be given by -

6 re + = ..t\ Zz e o C"'/‘/
3 61‘ 6y 6y - ¢

This perturbation can be used to calculate a standard deviation for the N differ-

_ent z values, since

Thus
S§=]-:7E (—g—in-!——géSy)
52 (e (5o + 255 ac0)
-G Az e (B zer s S5 b e
But

1 1
52 (00 =5t and =3 (&) = 83

and, since 8x and 8y may be considered for the present purpose to be indepen-
dent perturbations,

2 (8x &) =0

Thus, finally, \

s V@ (@s e

If z is a function of more than two variables, the equation is extended by
adding similar terms. Thus, if the components of a calculation have standard
deviations with some degree of reliability, a value can be found for the proba-
ble uncertainty of the answer, where “probable” has real numerical

significance,
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The calculation has been performed in terms of the variance or standard -
deviation of the x and y distributions. In actual practice, however, we do not
use the sample variance directly; we must calculate the best estimates of o,
gy, etc., and, in accordance with Eq. (3—6), we would use the modified value
for standard deviation with denominator N — 1 instead of N. The final result
would then be a best estimate for ¢,. The standard deviation of the mean for z
can then be calculated by direct use of Eq. (3-5) and will give the limits that

~ have a 68% chance of containing the unperturbed value.

Note that most experiments are not carried out in accordance with the re-
stricted assumptions of the above development. If, for example, we are study-
ing the flow rate of water through a pipe, we would measure the flow rate, pipe
radius, and pipe length independently and would choose the number of read-
ings in each sample on the basis of the intrinsic precision of the measurement.
We cannot, therefore, use Eq. (3-8) directly, since the various S’s are not
compatible. The solution is to calculate the standard deviation of the mean for
each of the elementary quantities first. If these are used in Eq. (3—8), the result
of the calculation will be immediately a standard deviation of the mean for z.

3-13 STANDARD DEVIATION OF COMPUTED
VALUES: SPECIAL CASES

Let us now apply Eq. (3-8) to a few common examples. In all the following
cases the various §’s are all assumed to be best estimates of the appropriate

universe value o.

(a) Sum of Two Variables

z=x+y
Here
9 _ 9%
ax ’ dy
and

S;=VS8:+ §2

Note that this result provides justification for Eq. (3-5). The mean value for
the sample, 3 (x;/N), is just such a function as z = x + y, where x and y hap-
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pen to be independent measurements of the same quantity. Thus, if
z ! (xp + x + x2 + )
= e x x * oo
N 1 2 3

0z 0z
o /N 1/N etc

dx,
122 (1)2
, = — r+ — 3-{-...
s \/(N)s_ s

= VNSZ/N? = S,/V/N

(b) Difference of Two Variables

and

z=x-—y
Here
—‘?E. = 1, ....a_z Pt __1
ox dy
but, again,

S, = VS + 82

Recalling Sec. 2-8(b), we note that the earlier discussion of measured differ-
ences is still valid.

() Product of Two Variables

Here

and
S: = Vy2§2 + x2§2

The specific value of S, at the particular values, x, and Yo, of x and y can be
obtained by substituting xo and y, in the equations. As was the case for uncer-
tainty in products, the equation is more clearly expressed in terms of relative
values of S. We obtain
2 2
z X y
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(d) Variables Raised to Powers

Here
z = x°
0z
— = gx®!
o0x
F
and

S: = Ve 0s? b

Again this is more instructive when expressed in terms of relative values:

S: __|a*s?

T 2

4 X

Sy
= qg—
X

(e) The General Case of Powers and Products
7 = xayb

The results of the two preceding sections can obviously be extended to give the

result
ERCRC
z X y

In contrast to the case of combined uncertainty, negative powers in the original
function need not be given special consideration; in the equation for S, powers
occur in squared form and automatically make a positive contribution.

If a function other than those listed above is encountered, the use of Eq.
-(3-8) will yield the desired result. Incidentally, we may note that, fot a func-
tion of a single variable, Eq. (3~8) reduces to the same form as for uncertain-
ties, Eq. (2-1). This correspondence is predictable for a situation in which we
do not have the probability-based interplay between two or more variables.

Finally, although we listed in Sec. 2-5 to Sec. 2-9 a number of different
approaches to the calculation of outer limits for uncertainties, the standard de-
viation of z is a uniquely defined quantity, and there is no alternative to the use
of Eq. (3-8). ‘
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3—-14 COMBINATION OF DIFFERENT TYPES
OF UNCERTAINTY

Unfortunately for the mathematical elegance of the development, we fre-
quently require the uncertainty in a computed result which contains quantities
having different types of uncertainty. We may require the uncertainty in

z = fl(x, y)

where, for example, x is a quantity to which have been assigned outer limits,
+ dx, within which we are “almost certain” that the actual value lies, while y is
a quantity whose uncertainty is statistical in nature, a sample standard devia-
tion, Sy, perhaps, or a standard deviation of the mean, S,/VN. We require an
uncertainty for z. Our initial difficulty is even to define the uncertainty in z, We
are trying to combine two quantities which have, in effect, completely differ-
-ent distibution curves. One is the standard Gaussian function; the other is a
rectangle, bounded by the values xo + 8x and xo — 8x and flat on top, because
the actual value of x is equally likely to be anywhere within the interval
Xo % 8x. Any general method of solving this problem is likely to be far too
complex for general use, but a simple approximation is available using the fol-
lowing procedure.

In the calculation for z we use the sample mean, ¥, for the y value, im-
plying that the universe mean has an approximately 2 chance of falling within
the interval, y = S,/ V'N. Let us, therefore, calculate limits for x that also have
a § probability of enclosing the actual value. Since the probability distribution
for x is rectangular, % of the area under the distribution curve is enclosed by
limits that are separated by a distance equal to £ of the total range of possibil-
ity, i.e., § of 2 &x. The total width of the region for 2 probability is, therefore,
3 8x and the uncertainty limits are =2 §x,

The quantity § &x is, therefore, compatible with S,/ VN, since both refer
to § probability. Equation (3—9) can now be used, inserting § & for the value of
the standard-deviation of the mean for x and S,/ VN for the y function. This
will yield a value for uncertainty in z which can be interpreted in accordance
with the % prescription. Note, however, that the limits for 95% probability are
not simply twice as wide as those for 3 probability; they would have to be cal-
culated separately using the above method.

3-15 REJECTION OF READINGS

One last, practical property of distribution curves concerns outlying values.
There is always the possibility of making an actual mistake, perhaps in mis-
reading a scale or in accidentally moving an instrument between setting and
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reading. We encounter the temptation, therefore, to assign some such cause to
a single reading that is well separated from an otherwise compact group of val-
ues. This is, however, a dangerous temptation, since the Gaussian curve does
permit values remote from the central part of the curve. Furthermore, once we
admit the possibility of pruning the observations, it can become very difficult
to know where to stop. We are dependent, therefore, on the judgment of the
experimenter. This is not unreasonable, since the experimenter knows more
about the measurement than anyone else, but criteria for making the choices
can be helpful. Many empirical “rules” for rejection of observations have been
formulated, but they must be used with discretion. It would be foolish to use a
rule to reject one reading which was just outside the limit set by the rule if
there are other readings just inside it. There is also the possibility that extra in-
formation relating to the isolated reading was noted at the time it was made,
and this can help us decide in favor of retention or rejection.

The guidance we desire in making such decisions can be found in the
properties of the Gaussian distribution. In a Gaussian distribution the probabil-
ity of obtaining readings outside the 2¢ limits is 5% (as we have seen before),
outside 3o limits it is 3%, and outside 4o limits the chance is no more than
6 X 107°. The decision to reject is still the responsibility of the experimenter,
of course, but we can say, in general terms, that readings falling outside 3o
limits are likely to be mistakes and candidates for rejection. However, a prob-
lem can arise because of our lack of information about the universe of readings
and its parameters X and o The better our knowledge of o, the more confident
we can be that any far-out and isolated reading arises from a genuinely extra-
neous cause such as personal error, malfunction of apparatus, etc. Thus, if we
make 50 observations that cluster within 1% of the central value and then ob-
tain one reading that lies at a separation of 10%, we can be fairly safe in sug-
gesting that this last reading did not belong to the same universe as the preced-
ing 50. The basic requirement, before any rejection is justified, is confidence
in the main distribution of readings. Clearly, there is no justification for taking
two readings and then rejecting a third measurement on the basis of a 3o crite-
rion. Unless the case for rejection is completely convincing, the best course is
to retain all readings, whether we like them or not.

It is wise also to remember that many of the greatest discoveries in
physics had their origin in outlying measurements.

PROBLEMS

The following observations of angles (in minutes of arc) were made while measuring
the thickness of a liquid helium film. Assume that the observations show random un-
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certainty, that they are a sample from a Gaussian universe, and use them in Problemg

10.
11,

12,

13.

14.

15.

16.

17.

1-14.
34 35 45 40 46
38 47 36 38 34
33 36 43 43 37
38 32 38 40 a3
38 40 48 39 32
36 40 40 36 34
1. Draw the histogram of the observations.
2. Identify the mode and the median.
3. Calculate the mean,
4, Calculate the best estimate of the universe standard deviation.
5, Calculate the standard deviation of the mean.
6. Calculate the standard deviation of the standard deviation.
7. (a) Within which limits does a single reading have a 68% chance of falling?

(b) Which limits give a 95% chance?

Within which limits does the mean have (a) a 68% chance, and (b) a 95% chance
of falling?

Within which limits does the sample standard deviation stand (a) a 68% chance
and (b) a 95% chance of falling?

Calculate a value for the constant 4 in the equation for the Gaussian distribution.

If a single reading of 55 had been obtained in the set, would you have decided in
favor of accepting it or rejecting it?

Take two randomly chosen samples of five observations each from the main set of
readings. Calculate their sample means and standard deviations to see how they
compare with each other and with the more precise values obtained from the big
sample.

If the experiment requires that the standard deviation of the mean should not ex-
ceed 1% of the mean value, how many readings are required?

If the standard deviation of the universe distribution must be known within 5%,
how many readings are required? '
Repeated measurements of the diameter of a wire of circular cross section gave a
mean of 0.62 mm with a sample standard deviation of 0.04 mm. What is the stan-
dard deviation for the calculated value of the cross-sectional area?

The wavelength of the two yellow lines in the sodium spectrum are measured to be
589.11 X 107 m and 589.68 X 10™° m, each with a standard deviation of
0.15 X 107° m. What is the standard deviation for the calculated difference in
wavelength between the two lines?

A simple pendulum is used to measure g using ' = 217\/%. Twenty measure-
ments of T give a mean of 1.82 sec and a sample standard deviation of 0.06 sec.
Ten measurements of / give a mean of 0.823 m and a sample standard deviation of
0.014 m. What is the standard deviation of the mean for the calculated value of g?

:
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