

Gas: Water Vapor

• The amount of vapor in the air is what we refer to as humidity. Pressure (mm Hg)

• Humidity is characterized in a number of different ways.

Humidity

- Dew Point Temperature (°C)
- Relative Humidity (vapor press/sat. vapor press) (%)
- Absolute Humidity (g m⁻³) (mass water vapor/volume)
- Specific Humidity (g kg⁻¹) (mass water vapor / mass total)
- Mixing Ratio (g kg⁻¹⁾ (mass water vapor / mass dry air)
- Vapor Pressure (mb)

Saturation

- When air is in <u>equilibrium</u> with a <u>pure</u>, plane water surface, it is said to be saturated.
 - Equilibrium
 - No net changes occurring in temperature, or composition of the system, under consideration.
 - For example, no warming or cooling and there is no change in the number of water molecules in the vapor state or in the liquid state.
 - Purity
 - The water in the liquid state consists only of water.
 - There are no dissolved substances.

Saturation in the Air

• Vapor amount in the air at saturation is a function of temperature.

• One representation of the dependence of saturation vapor pressure (e_s) on temperature is given by the Clausius Clapeyron equation.

Clausius Clapeyron Equation/Relationship

- Only a function of temperature.
- Roughly doubles for each 10 °C increase in Temperature.
- Curvature of the relationship is important.

Temperature (°C)

Clausius Clapeyron Equation/Relationship

$$e_s pprox e_o \cdot \exp \!\left[rac{L}{\mathfrak{R}_v} \cdot \left(rac{1}{T_o} - rac{1}{T}
ight)
ight]$$

- e_s Saturation Vapor Pressure e_o – 0.6113 kPa
- $R_v 461 \text{ J K}^{-1} \text{ kg}^{-1}$
- L Latent Heat
- T Temperature (K) $T_o - 273.15K$

Three States of Water

Cloud in a Jar

