AMS 16th Conference of Cloud Physics

Particle Shattering Analysis of Airborne Microphysical Probes Using IMPACTS Observations David Delene, Christian Nairy, Aaron Bansemer, Andrew Detwiler, Greg McFarquhar, and Andy Heymsfield

Abstract (Due 21 April 2022)

It is known that tips and inlets on in-situ microphysical probes can cause significant shattering of large ice crystals, which adversely affect cloud particle concentrations and size distributions measurements. The implementation of anti-shattering tips and software processing methods help to mitigate shattering issues. Shattering of ice particles was apparent in the in-situ microphysical data gathered during the Investigation of Microphysics and Precipitation for Coast-Threatening Snowstorms (IMPACTS) field campaign. In-situ cloud probes that utilize probe tips and external sampling are compared to similar instruments housed within the probe itself where particle transect a tube. Comparisons are done under a number of cloud concentration conditions, along with different aircraft speed and orientations. The comparisons determine conditions under which both types of probe provide reliable measurements.