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Motivation for Research
• The chain aggregation process is still not well understood.

• Where/How?
• Inconsistencies between cloud chamber experiments and                          

aircraft observations.
• Lack of representation in atmospheric cloud models.

• Influence on cloud radiative transfer properties (Liou 1973;
Stephens et al. 1990; Baran 2009).

• Contextualizing chain aggregates within storm life-cycles requires
analyzing diverse cases, but manually classifying tens of thousands
of particles is highly time-intensive.

Hawkeye-CPI Images
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Methods: 
1. Particle Classifications

• Classify observed (in-situ) chain and non-chain aggregates from diverse cloud regions from the IMPACTS field campaign.

2. Morphological Particle Attributes and Environmental Parameters
• Extract attributes and parameters for each classified particle
• Particle Attributes: Dmax, Area Ratio, Complexity, Compactness, Curl, Fine Detail, etc.
• Environmental Parameters: Temperature & Liquid Water Content (LWC)

3. Hyper-tune Two Tree-Based Classifiers 
• Train ➣ Test ➣ Validate

4. Comparison of Decision Tree-Based Methods

Objective

3

Employ supervised decision tree-based methods to differentiate ice crystal 
chain aggregates from non-chain aggregates.

105th AMS Annual Meeting – Second Symposium on Cloud Physics: New and Emerging Measurement Methods in Cloud and Precipitation Research III

Presenter
Presentation Notes
All-in particles only!



Previous Chain Aggregate 
Observations

Chain Aggregates on formvar slides that were generated in a cloud chamber. Adapted
from Saunders and Wahab, 1975.
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Laboratory Observations of Chain Aggregates:
• In High Electric Fields (Minimum Threshold: 60 kV m-1)

• -5 and -37 °C (Maximum efficiency at -8 °C)

• Ice Crystal Concentrations Between 3 and 4 ✕ 106 m-3

• Aggregation found to be temperature-dependent with electric fields.
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Aircraft Observations of Chain Aggregates:
• Mid- to upper-level clouds produced by summertime continental

convection in the tropics and sub-tropics.
• Field Campaigns: CapeEx19, CRYSTAL-FACE, ABFM-II,

EMERALD-II
• -8 to -65 °C (but mainly found < -25 °C)
• In-situ E-Fields (CapeEx19 & ABFM-II) < 60 kV m-1

• Wintertime Continental Convection in the Midlatitudes.
• Field Campaigns: IMPACTS
• -13 to -35 °C

Laboratory Observations of Chain Aggregates:
• In High Electric Fields (Minimum Threshold: 60 kV m-1)

• -5 and -37 °C (Maximum efficiency at -8 °C)

• Ice Crystal Concentrations Between 3 and 4 ✕ 106 m-3

• Aggregation found to be temperature-dependent with electric fields.
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Previous Chain Aggregate 
Observations

(a) PHIPS images (in-situ) of chain aggregates comprised of ice crystals found in 
cirrus anvil clouds during the CapeEx19 field campaign and (b) CPI images (in-situ) 
of chain aggregates found near the parameter of a convective band associated with a 
nor’easter off the New England coast.

Chain Aggregates on formvar slides that were generated in a cloud chamber.
Adapted from Saunders and Wahab, 1975.
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Laboratory Observations of Chain Aggregates:
• In High Electric Fields (Minimum Threshold: 60 kV m-1)

• -5 and -37 °C (Maximum efficiency at -8 °C)

• Ice Crystal Concentrations Between 3 and 4 ✕ 106 m-3

• Aggregation found to be temperature-dependent with electric fields.

Aircraft Observations of Chain Aggregates:
• Mid- to upper-level clouds produced by summertime continental

convection in the tropics and sub-tropics.
• Field Campaigns: CapeEx19, CRYSTAL-FACE, ABFM-II,

EMERALD-II
• -8 to -65 °C (but mainly found < -25 °C)
• In-situ E-Fields (CapeEx19 & ABFM-II) < 60 kV m-1

• Wintertime Continental Convection in the Midlatitudes.
• Field Campaigns: IMPACTS
• -13 to -35 °C

Nairy, C. M., D. J. Delene, A. G. Detwiler, J. M. Schmidt, P. R. Harasti, M. Schnaiter, E. Järvinen, T. 
D. Walker, Ice Crystal Chain Aggregates in Florida Cirrus Cloud Anvils - 3 August 2019 Case Study. 
Journal of Geophysical Research: Atmospheres. In Review, 2025



Dataset/Instrumentation
• Investigation of Microphysics and Precipitation 

for Atlantic Coast-Threatening 
Snowstorms (IMPACTS).

• NASA P-3b Orion Research Aircraft
• Hawkeye-Cloud Particle Imaging (CPI) Probe
• King Probe (Liquid Water Content [LWC])

Adapted from the NASA IMPACTS executive summary 
(https://espo.nasa.gov/impacts/).
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Hawkeye-CPI
King Probe
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Particle Classifications
• 5 Flight Segments Classified:

Total Time Coverage: 1hr 40m 49s
Temperature Range: -36 to -5 ºC

• Total # of Particles Classified 
(after QA/QC):

• 24,786

• # of Chain Aggregates Classified 
(after QA/QC):

• 1,357

9

*NOT TO SCALE*
105th AMS Annual Meeting – Second Symposium on Cloud Physics: New and Emerging Measurement Methods in Cloud and Precipitation Research III



Morphological Particle Attributes and Environmental Parameters

• Attributes calculated for “all-in” CPI imaged 
particles 

• Key attributes/parameters used found 
that optimized the decision tree 
methods: 

• Dmax, Complexity*, Curl*, Compactness*, Fine 
Detail*, Solidity*, & Temperature
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*Equations in extra slides
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Tree-Based Classifier Setup
• Hyper-tuned for the most optimal result.

• Key Parameters Used: Dmax, Complexity*, Curl*, Compactness*, Fine Detail*, Solidity*, & Temperature

• Random OverSampling (ROS) is applied to balance the dataset, improving sensitivity to rare 
chain aggregate occurrences.

• Total particles after ROS performed: 46,804 (50% chains, 50% non-chains) 

• 70% (36,762) used for training; 30% (14,042) used for testing and validation

1. Random Forest Classifier
2. eXtreme Gradient Boosting (XGBoost) Classifier
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*Equations in extra slides
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Key Takeaway:
- Less false positives (upper-right) and false negatives (lower left) using the XGBoost Classifier. 

Comparison: Random Forest to eXtreme Gradient Boosting (XGBoost)
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Key Takeaways:
• Random Forest weighs temperature strongly, though, accounts for most of the errors in the model.

• XGBoost recognizes and accounts for those errors, resulting in relatively balanced feature importance 
weights.

Comparison: Random Forest to eXtreme Gradient Boosting (XGBoost)
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Key Takeaways:
• XGBoost demonstrates superior calibration, as reflected in its lower Brier score, meaning it provides more 

reliable probability estimates.

Comparison: Random Forest to eXtreme Gradient Boosting (XGBoost)
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Key Takeaways:
• XGBoost consistently achieves higher accuracy with less data, indicating better learning efficiency.
• XGBoost outperforms Random Forest on validation accuracy.
• Less overfitting (gaps between training and validation curves) with XGBoost.

Comparison: Random Forest to eXtreme Gradient Boosting (XGBoost)

105th AMS Annual Meeting – Second Symposium on Cloud Physics: New and Emerging Measurement Methods in Cloud and Precipitation Research III



16

Key Takeaways:
• Polarized (with minimum overlap) in XGBoost predictions (more confidence).
• Random Forest is less confident likely due to errors arising from the highly weighted 

temperature attribute. 

Comparison: Random Forest to eXtreme Gradient Boosting (XGBoost)
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Class
Random Forest Classification Report XGBoost Classification Report

Precision Recall F1-Score Precision Recall F1-Score

Non-Chain Aggregate 86% 92% 89% 94% 98% 96%
Chain Aggregate 91% 84% 88% 98% 94% 96%
Overall Accuracy 88% 96%

RMSE 0.34 0.17
CV Accuracy 96% 96%

Comparison: Random Forest to eXtreme Gradient Boosting (XGBoost)

Random Forest Classifier XGBoost Classifier

Tree Building Parallel (bagging) Sequential (boosting)

Error Handling Averages results across many trees Corrects previous tree errors iteratively

Focus Reducing variance (stabilizing predictions) Reducing bias (minimizing error)

Speed Slower, especially with large datasets Optimized for faster performance

Overfitting Control Uses tree pruning and randomness Built-in regularization
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Summary
• Both the Random Forest and XGBoost classifications can accurately discriminate between chain 

aggregates and non-chain aggregates.

• XGBoost excels in both predictive accuracy and calibration, making it a better tool for 
classifying chain aggregates from other particle habits imaged by the CPI.

• Integration of advanced sampling and preprocessing strategies further boosts model 
generalizability in both the Random Forest and XGBoost classifiers.

Future Work:
• Apply XGBoost (and possibly the Random Forest concurrently) across all research flights conducted during 

the IMPACTS field campaign.
• Contextualize chain aggregates within storm life-cycles for improved understanding in the chain aggregation 

process.
18
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Extra Slides – Equations and Descriptions of Particle Attributes

• Dmax = Maximum Dimension
• Area Ratio = area ratio from ellipse fit
• Solidity = 𝐴𝐴

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∗(2.3 ∗1.0𝑒𝑒−3)2

• Circularity = 4𝜋𝜋 ∗ 𝐴𝐴
𝑃𝑃2

; (1 → perfect circle)

• Fine Detail Ratio = 𝑃𝑃 ∗(2𝑟𝑟 ∗ 2.3 ∗1.0𝑒𝑒−3)
𝐴𝐴

• Complexity = 𝑃𝑃 ∗ (1 + 𝜎𝜎)
𝜋𝜋

2 ∗ �𝐴𝐴 𝜋𝜋

; (Closer to 1 -> circular, rimed; > 1 -> aggregate, less rimed)

• Compactness = 𝑃𝑃2

4𝜋𝜋 ∗ 𝐴𝐴
; 1 -> circle (droplet); > 1 -> irregular

• Curl = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃 − (𝑃𝑃)2 − 16 ∗𝐴𝐴
; Measures the degree to which an object is ‘curled’ up (0 -> circle; > 0 

elongated and curly)
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Extra Slides – Random Forest
• Param Grid: {n_estimators: 250, max_depth: 12, min_samples_split: 

10, min_samples_leaf: 4, max_features: ‘sqrt’, criterion: ‘gini’}

• cv = StratifiedKFold(n_splits=10)
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Extra Slides – XGBoost
• num_boost_round = 500
• params = {'objective': 'binary:logistic’, 'max_depth': 8, 'learning_rate': 0.1, 'colsample_bytree': 

0.8, 'subsample': 0.8, 'gamma': 0.1, 'reg_alpha': 1, 'reg_lambda': 1, 'eval_metric': 'logloss', # 
Evaluation metric}

• # Train the model with early stopping
• evals = [(dtest, 'eval'), (dtrain, 'train')]
• bst = xgb_train(params, dtrain, num_boost_round=num_boost_round, evals=evals, 

early_stopping_rounds=10, verbose_eval=False)
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