Applying and Evaluating Tree-Based Ensemble Methods to Identify Ice Crystal Chain Aggregates during the IMPACTS Field Campaign

Christian Nairy¹ (christian.nairy@und.edu), David Delene¹, Joseph Finlon^{2, 3}, John Yorks², and Kenneth L. Thornhill⁴ ¹University of North Dakota, Department of Atmospheric Science ²National Aeronautics and Space Administration (NASA) - Goddard Space Flight Center ³Earth System Science Interdisciplinary Center (ESSIC), University of Maryland ⁴National Aeronautics and Space Administration (NASA), Langley Research Center

IP4 Ca

Vreatening Sno

Motivation for Research

- The chain aggregation process is still not well understood.
 - Where/How?
 - Inconsistencies between cloud chamber experiments and aircraft observations.
 - Lack of representation in atmospheric cloud models.
- Influence on cloud radiative transfer properties (Liou 1973; Stephens *et al.* 1990; Baran 2009).
- Contextualizing chain aggregates within storm life-cycles requires analyzing diverse cases, **but manually classifying tens of thousands of particles is highly time-intensive.**

Hawkeye-CPI Images

Objective

Employ supervised decision tree-based methods to differentiate ice crystal chain aggregates from non-chain aggregates.

Methods:

3

- 1. Particle Classifications
 - Classify observed (in-situ) chain and non-chain aggregates from diverse cloud regions from the IMPACTS field campaign.
- 2. Morphological Particle Attributes and Environmental Parameters
 - Extract attributes and parameters for each classified particle
 - Particle Attributes: D_{max}, Area Ratio, Complexity, Compactness, Curl, Fine Detail, etc.
 - Environmental Parameters: Temperature & Liquid Water Content (LWC)
- 3. Hyper-tune Two Tree-Based Classifiers
 - Train ≻ Test ≻ Validate
- 4. Comparison of Decision Tree-Based Methods

Previous Chain Aggregate Observations

Laboratory Observations of Chain Aggregates:

- In High Electric Fields (Minimum Threshold: 60 kV m⁻¹)
- -5 and -37 °C (Maximum efficiency at -8 °C)
- Ice Crystal Concentrations Between 3 and $4 \times 10^{6} \text{ m}^{-3}$
- Aggregation found to be temperature-dependent with electric fields.

Chain Aggregates on formvar slides that were generated in a **cloud chamber.** Adapted from Saunders and Wahab, 1975.

Previous Chain Aggregate Observations

Laboratory Observations of Chain Aggregates:

- In High Electric Fields (Minimum Threshold: 60 kV m⁻¹)
- -5 and -37 °C (Maximum efficiency at -8 °C)
- Ice Crystal Concentrations Between 3 and $4 \times 10^{6} \text{ m}^{-3}$
- Aggregation found to be temperature-dependent with electric fields.

Chain Aggregates on formvar slides that were generated in a **cloud chamber**. Adapted from Saunders and Wahab, 1975.

Previous Chain Aggregate Observations

Laboratory Observations of Chain Aggregates:

- In High Electric Fields (Minimum Threshold: 60 kV m⁻¹)
- -5 and -37 °C (Maximum efficiency at -8 °C)
- Ice Crystal Concentrations Between 3 and $4 \times 10^{6} \text{ m}^{-3}$
- Aggregation found to be temperature-dependent with electric fields.

Aircraft Observations of Chain Aggregates:

- Mid- to upper-level clouds produced by **summertime** continental convection in the tropics and sub-tropics.
 - Field Campaigns: CapeEx19, CRYSTAL-FACE, ABFM-II, EMERALD-II
 - -8 to -65 °C (but mainly found < -25 °C)
 - In-situ E-Fields (CapeEx19 & ABFM-II) $< 60 \text{ kV m}^{-1}$
- Wintertime Continental Convection in the Midlatitudes.
 - Field Campaigns: IMPACTS
 - -13 to -35 °C

Chain Aggregates on formvar slides that were generated in a **cloud chamber**. Adapted from Saunders and Wahab, 1975.

6

Previous Chain Aggregate Observations

Laboratory Observations of Chain Aggregates:

- In High Electric Fields (Minimum Threshold: 60 kV m⁻¹)
- -5 and -37 °C (Maximum efficiency at -8 °C)
- Ice Crystal Concentrations Between 3 and $4 \times 10^{6} \text{ m}^{-3}$
- Aggregation found to be temperature-dependent with electric fields.

Aircraft Observations of Chain Aggregates:

- Mid- to upper-level clouds produced by **summertime** continental convection in the tropics and sub-tropics.
 - Field Campaigns: CapeEx19, CRYSTAL-FACE, ABFM-II, EMERALD-II
 - -8 to -65 °C (but mainly found < -25 °C)
 - In-situ E-Fields (CapeEx19 & ABFM-II) $< 60 \text{ kV m}^{-1}$
- Wintertime Continental Convection in the Midlatitudes.
 - Field Campaigns: IMPACTS
 - -13 to -35 °C

Nairy, C. M., D. J. Delene, A. G. Detwiler, J. M. Schmidt, P. R. Harasti, M. Schnaiter, E. Järvinen, T. D. Walker, Ice Crystal Chain Aggregates in Florida Cirrus Cloud Anvils - 3 August 2019 Case Study. Journal of Geophysical Research: Atmospheres. In Review, 2025

Chain Aggregates on formvar slides that were generated in a **cloud chamber**. Adapted from Saunders and Wahab, 1975.

CapeEx19

IMPACTS 2022

(a) PHIPS images (**in-situ**) of chain aggregates comprised of ice crystals found in cirrus anvil clouds during the CapeEx19 field campaign and (b) CPI images (**in-situ**) of chain aggregates found near the parameter of a convective band associated with a nor'easter off the New England coast.

Dataset/Instrumentation

- Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS).
 - MP2(Cars
- NASA P-3b Orion Research Aircraft
 - Hawkeye-Cloud Particle Imaging (CPI) Probe
 - King Probe (Liquid Water Content [LWC])

8

Adapted from the NASA IMPACTS executive summary (https://espo.nasa.gov/impacts/).

Particle Classifications

 5 Flight Segments Classified: *Total Time Coverage:* 1hr 40m 49s *Temperature Range:* -36 to -5 °C

• Total # of Particles Classified (after QA/QC):

• 24,786

 # of Chain Aggregates Classified (after QA/QC):

• 1,357

NOT TO SCALE

[°] Morphological Particle Attributes and Environmental Parameters

Attributes calculated for "all-in" CPI imaged particles

- Key attributes/parameters used found that optimized the decision tree methods:
 - D_{max}, Complexity*, Curl*, Compactness*, Fine Detail*, Solidity*, & Temperature

*Equations in extra slides

11

Tree-Based Classifier Setup

- Hyper-tuned for the most optimal result.
- Key Parameters Used: D_{max}, Complexity*, Curl*, Compactness*, Fine Detail*, Solidity*, & Temperature **Equations in extra slides*
- Random OverSampling (ROS) is applied to balance the dataset, improving sensitivity to rare chain aggregate occurrences.

- Total particles after ROS performed: 46,804 (50% chains, 50% non-chains)
- 70% (36,762) used for training; 30% (14,042) used for testing and validation
- **1. Random Forest Classifier**
- 2. eXtreme Gradient Boosting (XGBoost) Classifier

Key Takeaway:

- Less false positives (upper-right) and false negatives (lower left) using the XGBoost Classifier.

12

Key Takeaways:

- Random Forest weighs temperature strongly, though, accounts for most of the errors in the model.
- XGBoost recognizes and accounts for those errors, resulting in relatively balanced feature importance weights.

13

Key Takeaways:

• XGBoost demonstrates superior calibration, as reflected in its lower Brier score, meaning it provides more reliable probability estimates.

Key Takeaways:

15

- XGBoost consistently achieves higher accuracy with less data, indicating better learning efficiency.
- XGBoost outperforms Random Forest on validation accuracy.
- Less overfitting (gaps between training and validation curves) with XGBoost.

Key Takeaways:

16

- Polarized (with minimum overlap) in XGBoost predictions (more confidence).
- Random Forest is less confident likely due to errors arising from the highly weighted temperature attribute.

<u>Class</u>	Random Forest Classification Report			XGBoost Classification Report		
	Precision	<u>Recall</u>	F1-Score	Precision	Recall	F1-Score
Non-Chain Aggregate	86%	92%	89%	94%	98%	96%
Chain Aggregate	91%	84%	88%	98%	94%	96%
Overall Accuracy	88%			96%		
RMSE	0.34			0.17		
CV Accuracy	96%			96%		
	Random Forest Classifier			XGBoost Classifier		
	IN AL					
	Nai			4		
Tree Building	Kai	Parallel (bagg	ing)	S	equential (boost	ing)
Tree Building Error Handling	Average	Parallel (bagg s results acros	ing) s many trees	Socorrects p	equential (boost revious tree erro	ing) ors iteratively
Tree Building Error Handling Focus	Average Reducing va	Parallel (bagg s results acros ariance (stabiliz	s many trees zing predictions)	So Corrects pr Reduci	equential (boost revious tree erro ng bias (minimiz	ing) ors iteratively
Tree Building Error Handling Focus Speed	Average Reducing va Slower, e	Parallel (bagg s results acros ariance (stabiliz especially with	s many trees zing predictions) large datasets	Se Corrects pr Reduci Optimi	equential (boost revious tree erro ng bias (minimiz zed for faster per	ing) ors iteratively ing error) formance

17

Summary

• Both the Random Forest and XGBoost classifications can accurately discriminate between chain aggregates and non-chain aggregates.

- XGBoost excels in both predictive accuracy and calibration, making it a better tool for classifying chain aggregates from other particle habits imaged by the CPI.
- Integration of advanced sampling and preprocessing strategies further boosts model generalizability in both the Random Forest and XGBoost classifiers.

Future Work:

- Apply XGBoost (and possibly the Random Forest concurrently) across all research flights conducted during the IMPACTS field campaign.
- Contextualize chain aggregates within storm life-cycles for improved understanding in the chain aggregation process.
 UND UNIVERSITY OF
 UNORTH DAKOTA

18

19

References & Acknowledgements

- Baran, A. J. (2009). A review of the light scattering properties of cirrus. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(14), 1239–1260. https://doi.org/10.1016/j.jqsrt.2009.02.026
- Liou, K. N. (1973). Transfer of Solar Irradiance through Cirrus Cloud Layers., J. Geophys. Res., 78, 1409–1418.
- Nairy, C. M. (2022). Observations of Chain Aggregates in Florida Cirrus Cloud Anvils on 3 August 2019 during CAPEEX19 (Master's thesis), Dept. of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota. Retrieved from https://commons.und.edu/theses/4363/
- Saunders, C. P. R., & Wahab, N. M. A. (1975). The Influence of Electric Fields on the Aggregation of Ice Crystals. Journal of the Meteorological Society of Japan. Ser. II, 53(2), 121–126. <u>https://doi.org/10.2151/jmsj1965.53.2_121</u>
- Schmitt, C. G., and A. J. Heymsfield (2014), Observational quantification of the separation of simple and complex atmospheric ice particles, Geophys. Res. Lett., 41, 1301–1307, doi:10.1002/2013GL058781.
- Stephens, G. L., Tsay, S.-C., Stackhouse, P. W., & Flatau, P. J. (1990). The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback. *Journal of the Atmospheric Sciences*, 47(14), 1742–1754. <u>https://doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2</u>
- Stith, J. L., Avallone, L. M., Bansemer, A., Basarab, B., Dorsi, S. W., Fuchs, B., et al. (2014). Ice particles in the upper anvil regions of midlatitude continental thunderstorms: the case for frozen-drop aggregates. *Atmospheric Chemistry and Physics*, 14(4), 1973–1985. <u>https://doi.org/10.5194/acp-14-1973-2014</u>

This research was supported by a NASA research grant to the University of North Dakota. Grant #: 80NSSC19K0328. The IMPACTS dataset is publicly available at the NASA GHRC <u>http://dx.doi.org/10.5067/IMPACTS/DATA101</u>. We would also like to thank Andrew Heymsfield, Stephen Nicholls, Mircea Grecu, Andrew Detwiler, & Patrick Britt for their added expertise in this

work.

NORTH DAKOTA

Extra Slides – Equations and Descriptions of Particle Attributes

- Dmax = Maximum Dimension
- Area Ratio = area ratio from ellipse fit
- Solidity = $\frac{A}{Hull * (2.3 * 1.0e^{-3})^2}$ • Circularity = $\frac{4\pi * A}{P^2}$; (1 \rightarrow perfect circle) • Fine Detail Ratio = $\frac{P * (2r * 2.3 * 1.0e^{-3})}{A}$ • Complexity = $\frac{P * (1 + \sigma)}{\pi}$; (Closer to 1 -> circular, rimed; > 1 -> aggregate, less rimed) $\left(2 * \sqrt{A/\pi}\right)$ • Compactness = $\frac{P^2}{4\pi * A}$; 1 -> circle (droplet); > 1 -> irregular • Curl = $\frac{D_{max}}{P - \sqrt{(P)^2 - 16 * A}}$; Measures the degree to which an object is 'curled' up (0 -> circle; > 0 elongated and curly)

20

Extra Slides – Random Forest

- Param Grid: {n_estimators: 250, max_depth: 12, min_samples_split: 10, min_samples_leaf: 4, max_features: 'sqrt', criterion: 'gini'}
- cv = StratifiedKFold(n_splits=10)

21

Extra Slides – XGBoost

• num_boost_round = 500

22

- params = {'objective': 'binary:logistic', 'max_depth': 8, 'learning_rate': 0.1, 'colsample_bytree': 0.8, 'subsample': 0.8, 'gamma': 0.1, 'reg_alpha': 1, 'reg_lambda': 1, 'eval_metric': 'logloss', # Evaluation metric}
- # Train the model with early stopping
- evals = [(dtest, 'eval'), (dtrain, 'train')]
- bst = xgb_train(params, dtrain, num_boost_round=num_boost_round, evals=evals, early_stopping_rounds=10, verbose_eval=False)

