Airborne Data Processing and Analysis

David Delene Department of Atmospheric Sciences University of North Dakota

Scientific Programming: Problems and Solution?

- Scientist write program because they understand the problem to be solved; however, they are judged/reward for writing papers, not producing data sets or software.
- Software used to collect, process and analyze measurements and models almost never evaluated.
 - Sometimes by supervises or co-workers
 - No independent source code review. (Class???)
- Mistakes in software result in wrong scientific conclusions!
 - Black Box / White Box Testing

Accuracy of Scientific Results

- Scientist could only reproduce 6 out of 53 "landmark" articles published by reputable labs in top journals.
 - http://www.nature.com/nature/journal/v483/n7391/full/48353
 1a.html
 - http://www.reuters.com/article/2012/03/28/us-science-ca ncer-idUSBRE82R12P20120328
- John P. A Ioannidis explains in detail how "It can be proven that most claimed research findings are false."
 - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/
- Personnel Experience

Airborne Data Processing and Analysis (ADPAA) Software Package (http://sourceforge.net/projects/adpaa/)

- Independent, Open, and Freely Available
- GNU/GPL v3 Licensed (Only non-commercial use)
- Started in 2007, Version 1618 March 2014
- Approximately 205,051 Lines of Code (IDL, Perl, Bash, csh, FORTRAN, C, Python, etc.)
- Subversion (SVN) Source Code Management System
- Feature Requests, Bug Tracker, Forum and Wiki

Delene, D. J., Airborne Data Processing and Analysis Software Package, Earth Science Informatics, 4(1), 29-44, 2011, URL: http://dx.doi.org/10.1007/s12145-010-0061-4, DOI: 10.1007/s12145-010-0061-4.

Airborne Data Sets

Quality Control - The process of conducting tests to check that measurements are being made correctly and accurately.

Quality Assurance - The process

of reviewing a data set to

eliminate measurements that are

invalid due to known problems.

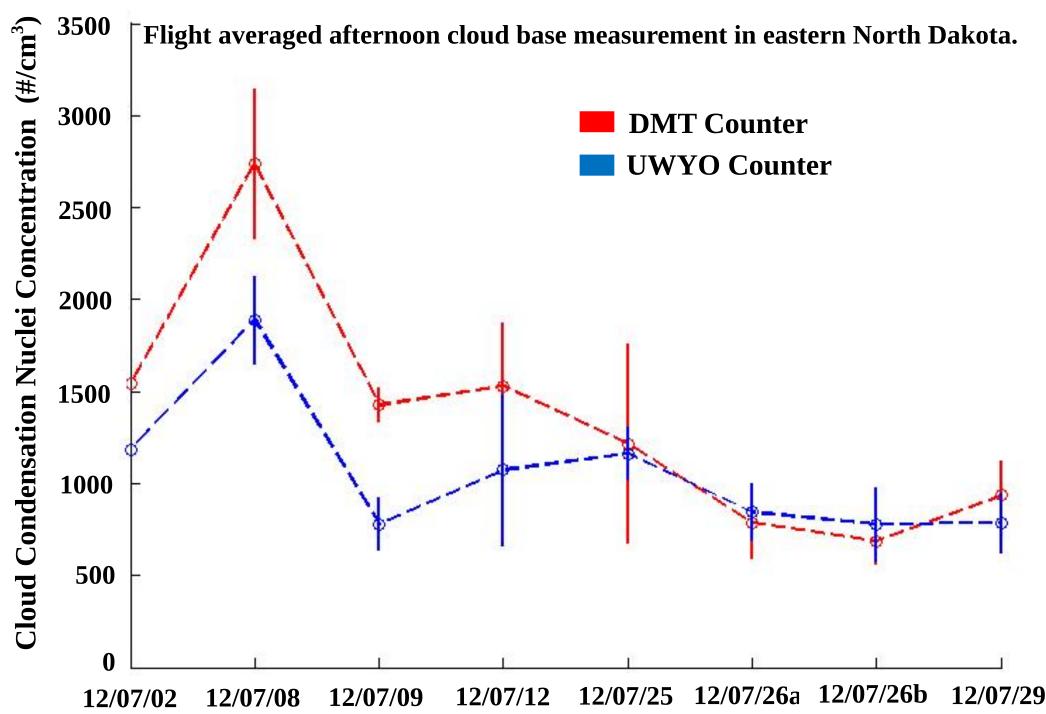
Data Processing

Data Quality Control

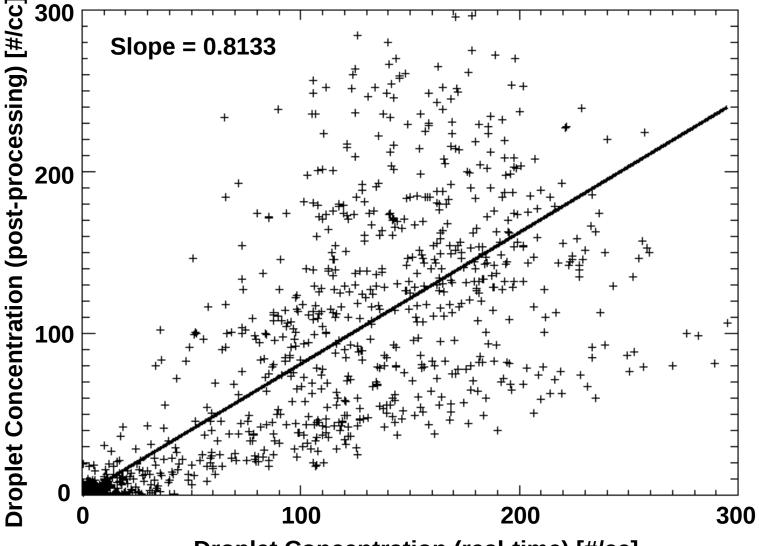
-Calibration Checks

- Data Missing Values Codes
- Levels of Data Processing
 - -Raw Recorded Data
 - —Engineering to Physical Units
 - —Single Instrument Data Files
 - —Combined Instrument Data File
- Data Quality Assurance

-Scientific Data Review

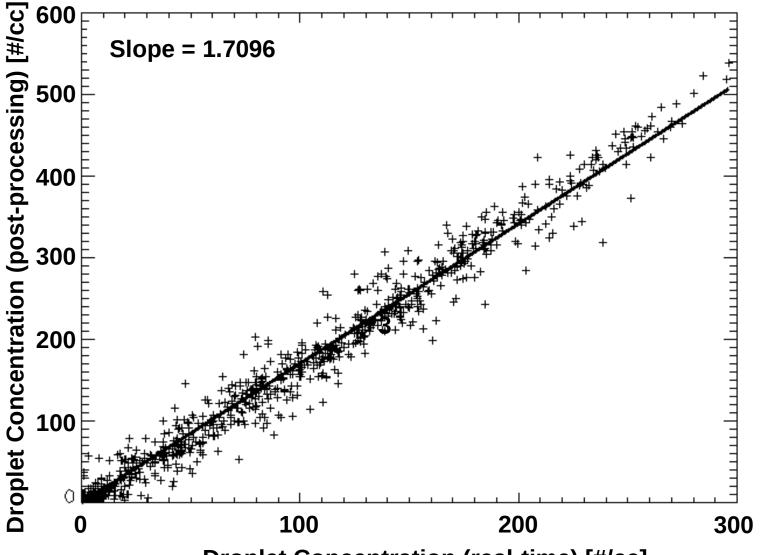

[delene@ice 20140306_174537]\$	P
Processing the 14_03_06_17_45_37.sea file	
Creating 14_03_06_17_45_37.applanix.1Hz	
Creating 14_03_06_17_45_37.analog.1Hz Done	2
Processing the 14_03_06_17_45_37.analog.??? file Done	2
Processing the 14_03_06_17_45_37.2dc file Done	2
Processing the 14_03_06_17_45_37.serial.GPS.raw Done	2
Creating 14_03_06_17_45_37.physical.clean Done	2
Creating 14_03_06_17_45_37.physical.filtered Done	
Creating the 14_03_06_17_45_37.physical.10Hz file Done	
Creating the 14_03_06_17_45_37.physical.1Hz file	
Processing the 14_03_06_17_45_37.physical.? file	
Creating Ĭ4_03_06_17_45_37.basicP1T1.1HzDone Creating 14_03_06_17_45_37.basicP1T2.1HzDone	
Creating 14_03_06_17_45_37.basicP112.1Hz	
Creating 14_03_06_17_45_37.basicP2T1.1Hz	
Creating 14_03_06_17_45_37.basicP2T2.1Hz	
Creating 14 03 06 17 45 37.basic.1Hz Done	
Processing the 14_03_06_17_45_37.counts.pcasp.raw Done	
Creating 14_03_06_17_45_37.basic.8Hz	
Processing the 14_03_06_17_45_37.counts.cdp.raw Done	
Creating 14_03_06_17_45_37.king.raw	
Processing the 14_03_06_17_45_37.applanix.raw	
Creating 14_03_06_17_45_37.angles.applanix.1Hz	
Creating 14_03_06_17_45_37.king.1Hz	
Creating 14 03 06 17 45 37.conc.cdp.1Hz	
Creating 14 03 06 17 45 37.egg.raw Done	
Creating 14_03_06_17_45_37.wind.raw Done	
Creating 14_03_06_17_45_37.nevwc.raw file Done	
Creating 14 03 06 17 45 37.nevwc.1Hz Done	
Creating 14 03 06 17 45 37.serial.GPS.10sec	
Creating 14 03 06 17 45 37.REAL.winds.1Hz	
Creating 14 03 06 17 45 37.550nm.scat.raw	2
Creating 14_03_06_17_45_37.conc_stp.pcasp.raw	2
Creating 14_03_06_17_45_37.oph file	
Creating 14 03 06 17 45 37.air file	
Using 14_03_06_17_45_37.2dc to create 2DC images Done	2
[delene@ice 20140306_174537]\$	5

-Scripts Search for Unrealistic Values


Comments on Scientific Data

- Quick Visualization of data is very Important.
 - Create a preliminary version of the data using automated processing scripts.
 - Create a final data set after the project is over by applying manual edits to the "raw" data files which replace "bad" data with missing value codes.
- Archive the raw data and any editing files.
- Work with ASCII data as much as possible.
 Compress ASCII files, if necessary.
- Use a standard data format, which includes Meta data in all data files.

Instrument Comparison Example


Comparison of Software Processing Methods

Droplet Concentration (real-time) [#/cc]

Comparison of the M300 real-time data processing method (x-axis) and Airborne Data Processing and Analysis (ADPAA) post-processing method for the Forward Scattering Spectrometer Probe. All 1 Hz average data from the second flight on January 10, 2008 are included.

Comparison of Software Processing Methods

Droplet Concentration (real-time) [#/cc]

Comparison of the M300 real-time data processing method (x-axis) and postprocessing method (y-axis) after fixing bead fraction problem. All 1 Hz average data from the second flight on January 10, 2008 are included. Processing includes beam fraction correction but not coincidence and dead time corrections.

Scientific Processing Summary

- Different software methods (codes) can disagree and any disagreement needs to be resolved.
 - Airborne Data Processing Workshop (Boston, July 5 & 6 2014)
- Well calibrated instruments and validated software is critical for the scientific progress.
- Peer reviews of papers should require not only open data sets but open source software.
- If a paper's major conclusions are shown to be wrong, the papers should be retracted.
 - http://retractionwatch.com/2012/09/25/if-a-papers-major-conclu sions-are-shown-to-be-wrong-we-will-retract-the-paper-plos/

Proposed Solution

- <u>Private company for scientific data processing.</u>
 - Investment: Develop necessary tools (software).
 - -Reward: Could pay software developers at market rate.
- Focus
 - Aircraft Data Sets (Instrument development companies are not software development companies)
 - Time Series Measurements (UAS, Ground Stations)
- Model
 - Open source software, open data sets.
 - -Use best tools (software) available.
 - Support instruments from all companies.

Revenue Sources

- Creation of "Analysis Ready" data sets for field project.
 - Groups that can't support software development personnel would support the processing of data so they can conduct there analysis.
- Yearly Maintenance contracts
 - Continue support and development
- Open Source Existing Code
 - Refactoring software into open repositories.

Obstacles

- Scientist and project manages don't like paying for software.
 - Buy instruments, so software is similar.
- Development of client list.
 - Work with instrument development companies.