
Airborne Data Processing and Analysis
Software Package

David J. Delene1

1Department of Atmospheric Sciences
University of North Dakota
Clifford Hall 420
4149 University Avenue
Grand Forks, ND 58202-9006

Correspondance Email: delene@aero.und.edu

Software Article submitted to Earth Science Informatics on 28
December 2009.

Revised and resubmitted to Earth Science Informatics on 4 June 2010.

Keywords: Time Series Measurement, Open Source Scientific
Software, Airborne Measurements, Research Aircraft

1

mailto:delene@aero.und.edu

Abstract The practice of conducting quality control and quality
assurance in the construction of data sets is often an overlooked and
underestimated task of many research projects in the Earth Sciences. The
development of software to effectively process and quickly analyze
measurements is a critical aspect of a research project. An evolutionary
approach has been used at the University of North Dakota to develop and
implement software to process and analyze airborne measurements.
Development over the past eight years has resulted in a collection of
software named the Airborne Data Processing and Analysis (ADPAA)
package which has been published as an open source project on Source
Forge. The ADPAA package is intended to fully automate data processing
while incorporating the concept of missing value codes and levels of data
processing. At each data level, ADPAA utilizes a standard ASCII file format
to store measurements from individual instruments into separate files. After
all data levels have been processed, a summary file containing parameters
of scientific interest for the field project is created for each aircraft flight.
All project information is organized into a standard directory structure.
ADPAA contains several tools that facilitate quality control procedures
conducted on instruments during field projects and laboratory testing. Each
quality control procedure is designed to ensure proper instrument
performance and hence the validity of the instrument's measurement. Data
processing by ADPAA allows edit files to be created that are automatically
used to insert missing value codes into a time period that had instrument
problems. The creation of edit files is typically done after the completion of
a field project when scientists are performing quality assurance of the data
set. Since data processing is automatic, preliminary data can be created and
analyzed within hours of an aircraft flight and a complete field project data
set can be reprocessed many times during the quality assurance process.
Once a final data set has been created, ADPAA provides several tools for
visualization and analysis. In addition to aircraft data, ADPAA can be used
on any data set that is based on time series measurements. The concepts
illustrated by ADPAA and components of ADPAA, such as the Cplot
visualization tool, are applicable to areas of Earth Science that work with
time series measurements.

2

Introduction

With current electronic instruments and computer technology, the
amount of recorded observations available in Earth Science fields, such as
Atmospheric Science, is enormous. Recorded observations are generally
referred to as data, which by itself does not result in scientific progress but
has to be analyzed to extract information and scientific understanding.
Pinch (1985) proposed the concept of 'externalization of observation' to
point out how a long chain of interpretations are used when reporting on
modern scientific observations. In this respect, modern airborne
observations made in the atmospheric sciences are no different than
observations of solar neutrinos made in astronomy. Both types of
experiential observations do not depend much on sense perceptions, but
rather on the reliability of the practices and assumptions that went into the
observation process. What is important is not what the experimenter 'saw'
but rather how carefully the practices were followed and how good the
software programs were written. In this paper, I report on the current
practices followed, and software used, when constructing airborne data sets
in the Department of Atmospheric Sciences at the University of North
Dakota. These practices and the software tools are similar to the Federal
Reference Method for PM2.5 aerosol sampling used by the US Environmental
Protection Agency (Noble et al. 2001), in that they both describe practices
that need to be conducted and tools used when making measurements that
allow for comparisons between data sets. In the case of the airborne
measurement described here, the practices and tools extend be on
instrumentation to include software programs and data processing
methods.

The University of North Dakota has owned and operated a research
aircraft since the mid 1970s which has been used to make airborne
measurements in many government funded field projects and privately
sponsored programs. Measurements from the University of North Dakota’s
Citation Research Aircraft has resulted in many scientific publications (e.g.
Prenni et al. 2007; Sukovich et al. 2009) and contributed to the
development of airborne systems such as the Tropospheric Airborne
Meteorological Data and Reporting (TAMDAR) system (Murray et al. 2005).
Recently, a new Cessna Citation II jet aircraft has been purchased and
modified to carry instruments to perform airborne research. All instruments
provide some type of measurement that needs to be recorded for further
scientific analysis. Most modern instruments provide either an on-board
data recording method or stand alone data recording software. On an
observational platform such as an aircraft, it is desirable to have a central
system that acquires and records all measurement in real time. A single
central data recording system ensures that all measurements are time

3

synced and that only one data file needs to be archived for each aircraft
flight.

Central aircraft data acquisition systems are commercially available, or
can be custom made. Custom made aircraft acquisition systems have the
disadvantage of typically being poorly documented and only a small group
of people, sometimes only one person, understands how to configure the
system. Commercial systems vendors, on the other hand, can spread the
development and documentation cost across several research groups and
hence provides better documentation and more features at lower cost
relative to one-of-a-kind custom systems.

The University of North Dakota owns and operates the Science
Engineering Associates, Inc. model M300 Data Acquisition System (M300)
for acquiring and recording airborne measurements (Science Engineering
Associates 2009). The M300 (Fig. 1) is built on the QNX real-time operating
system and is capable of synchronous and asynchronous data acquisition.
The system is configurable via a graphical interface with setup information
saved in editable tables. The M300 has real-time data processing
functionality that is utilized to display measurements to on board personnel
and for data down linking.

A software environment for post-processing data recorded by a data
acquisition system, such as the M300, should have the following
characteristics:

● A programming environment that enables rapid software
development;

● A flexible, non-proprietary software environment;

● A robust environment for testing processing software;

● A modular data processing environment;

● The ability to use open-source code;

● A method to simply and completely automate data reprocessing; and

● The ability to work with a complete flight data set at one time so
measurements at a future point in time can be used in a data
processing algorithm.

While there has been a lot of progress in instrumentation and computer
hardware used in Earth Science research over the past several decades, it is
only recently that software to process and analyze the vast amount of data
recorded by data acquisition systems from many different types of
instruments has been developed. The necessity to work with data from
many different instruments and the lack of robust software tools has lead
scientists to develop their own software tool sets. At the University of North
Dakota, a modern post-processing method that begins with the binary data
file created by the M300 data acquisition system was started from scratch

4

in 2002 since no software environment existed with the characteristics
listed above. Previous to 2002, aircraft data was post-processed using a
single large FORTRAN module. The FORTRAN module was time consuming
to modify, difficult to understand, and very difficult for multiple developers
to work on. Another alternative processing method is real-time data
processing within the data acquisition system itself. This type of data
processing has the following short comings:

● Data acquisition systems are a difficult and time consuming
programming environment.

● Commercially available data acquisition systems are proprietary
development environments that do not use open source software.

● There is a limited ability to test processing software since data
acquisition systems are specialized computer systems with limited
availability.

● Data acquisition systems are not modular data processing
environments.

● Reprocessing of data using a data acquisition system is difficult to
automate.

● There is absolutely no way of using measurements at a future point
in time in a data processing algorithm when processing data in real
time.

With the realization that no truly similar software environment existed
(Holzwarth et al. 2010) and to facilitate future development outside the
airborne research community, an open source project, Airborne Data
Processing and Analysis (ADPAA), was started on 8 November 2008 (Source
Forge 2009). Using open source software allows others to examine the
processing methodology implementation, to facilitate learning of software
development techniques, and to collaborate closely with other scientists on
processing algorithm development, and is not restricted to one vendor’s
software solution. Likewise, those scientists who use close source
processing software, in either instruments or data acquisition systems, are
hindered in trouble shooting problems and there is no easy way for outside
scientific review of an algorithm’s implementation. The increasing
complexity of many modern processing algorithms has rendered “black box”
testing (validating the output given an input) insufficient to validate the
implementation of an algorithm. The ability to conduct “white box” testing
(examination of the source code) should be a prerequisite for scientific
publication of an instrument's measurement.

5

Design and Implementation

Objectives

The main design objectives of ADPAA are to provide the following:

● A completely automated system that enables preliminary data to be
generated shortly after each aircraft flight;

● A system that fully implements the concept of missing value codes;

● Data files that are self documenting using the concept of meta-data;

● Standard directory structure for storing files;

● A system to enable quick analysis of data for quality control
purposes;

● Implementation of a quality assurance process whereby manually
created edits are documented in an “edit” file and automatically
applied to “raw” data files to create a “clean” version of the data file;
and

● Source code that is easily available to scientist outside the
organization.

Automation

Graphical User Interfaces (GUI) enables easy point and click instructions
but do not allow for easy automation since GUIs require manual
intervention. In contrast, a command line interface allows easy automation
of data processing routines. The Linux operating system is based on the
philosophy of command line interfaces that do simple things while being
combined to complete complex tasks. Commands typically utilize arguments
given after the command name itself to change execution switches and
provide necessary input values. ADPAA follows the UNIX/Linux philosophy
(Gancarz 2003) by using custom written shell (csh, bash, etc.) scripts that
accept arguments to automate the post-processing of raw data files. Use of
shell scripts that are executed on a laptop running Linux allows automatic
generation of preliminary data files within hours after completion of an
aircraft flight. Furthermore, automated processing scripts make it trivial to
reprocess data.

The most important design objective of all the automatic processing
routines is to have code that is clearly documented and understandable.
Documentation includes a meta-data file header and references for all
scientific equations implemented by the code. Comprehensible code is
considered far more important than execution speed. While some
techniques are used to improve code execution speed, such as limiting file
input/output by utilizing memory, they are only used when they do not

6

increase code complexity. ADPAA has followed the agile development
philosophy where flexibility and learning are stressed over control and
efficiency (Subramanian et al. 2009). Hence, scripts are utilized over a
programming environment, like FORTRAN or C, since scripts are more
flexible for linking modules together.

To facilitate processing via scripts, the concept of data processing levels,
whereby data at higher levels are derived from lower level data, is utilized.
The data processing level concept used by ADPAA is similar to data levels
used by NASA for remote sensing data products (National Aeronautics and
Space Administration 1986). Data level 0 contains the “raw” data files
created by a data acquisition system. At data level 1, a data file is created
for each aircraft instrument. At data level 2, parameters are converted from
engineering units (e.g. volts) to physical units (e.g. Celsius). At data level 3,
parameters from different instruments are combined. For example,
measurements from a total temperature probe are combined with true air
speed measurements to determine ambient temperature. At data level 4,
derived parameters from different instruments are combined. For example,
the droplet spectrums from a Forward Scattering Spectrometer Probe
(FSSP) are combined with the droplet spectrum from a 2-dimensional cloud
imaging probe (2DC).

The final step in the data processing methodology is to create a summary
file that contains all parameters of scientific interest. The specific
parameters contained in a field project's summary file depend on
instruments deployed and the project's scientific objective(s). Typically, if a
field project is a continuation of an earlier project, the summary file
parameters will be the same or very similar (e.g. different type of
instrument used to measure the same parameter). The summary data files
can contain parameters from any data level. Since parameters of scientific
interest can be measured at different frequencies, high frequency
parameters are averaged to the summary file frequency. Typically, a
frequency of 1 Hz is used for the summary file. Figure 2 illustrates the
automatic processing of data that is implemented by ADPAA.

Missing Value Code

Missing value codes are numbers that have a physically unrealistic value,
which are used to indicate that a valid measurement is not available.
Typically, ADPAA uses a very large number, such as 999999.9999. It is
important to note that a value of zero typically can not be used as a missing
value code since it can be a valid measurement, such as in the case of an air
temperature of 0 0C.

The concept of missing value codes has been fully incorporated into
ADPAA. When processing scripts encounter a missing value code, they do
not use the value to calculate the derived parameter but instead substitute

7

the missing value code of the derived parameter. For example, when
ambient air temperature is calculated using the Rosemount Probe
temperature and true air speed data, and the true air speed parameter is a
missing value code, the ambient air temperature will have its missing value
code inserted because a derived parameter can not be calculated if a
dependent parameter is missing. Since missing data makes analysis more
difficult, there is a tendency to interpolate or use a standard value when a
measurement is missing; however, this should not be done when creating a
scientific data set. Once the data set has been created, the scientist
analyzing the data can decide upon a method (e.g. Healy and Westmacott
1956; Rubin 1976; Horton and Lipsizt 2001) to handle time periods without
valid measurements.

Data Format

Standard ASCII data file formatting is used for all data during processing
by ADPAA except for the inherently binary image probe data (e.g. 2DC
images). While binary data files are smaller, the ease of using ASCII files
and the ability to quickly examine values make ASCII files more practical.
Furthermore, if file storage size is an issue, ASCII data files can be easily
and automatically compressed to binary formats using utilities such as gzip
and bzip2.

ADPAA uses a standard ASCII file format based on a NASA specification
outlined by Gaines and Hipskind (2009). ADPAA uses a slightly modified
version of file format number 1001. The modification is not to restrict the
line length to 132 characters but to allow any line length. The 132 character
restriction is not required for modern software and having all parameters
on a single line enables easy file importing with software such as Perl and
Microsoft Excel. The file format includes a meta-data header that fully
describes data contained within a respective file, which eliminates the need
for users to request such information. In addition, meta-data allows
processing scripts and analysis software to be written in a more generic
manner. For example, each parameter’s missing value code is part of the
meta-data so it is not necessary to hard code the missing value code into
software. An example ASCII meta-data file with a brief explanation is given
in Appendix A.

Project summary data files are created in the standard ASCII format;
however, a NetCDF formatted version of summary data files are also
created using an automated script. NetCDF files have advantages in that
they are standard files which contain meta-data, but they are more difficult
to work with and values cannot be viewed using text editors since it is a
binary data file format. Also, standard Linux scripts (designed to work on
ASCII files) cannot be used on the files. The additional complexity of
NetCDF files can make scientific analysis easier, especially if analyzing

8

multiple flights or data from multiple field projects. However, the additional
complexity of NetCDF files is judged to add little value during data
processing so ASCII files are used instead of a binary data file format such
as NetCDF.

Directory Structure

Using a standard data structure and file names during data processing
has advantages similar to using a standard formatted data file. With a
standard directory structure, scripts can automatically perform processing
tasks on files, such as combining data from all flights into a field project file.
In addition to instrument measurement data, the directory structure
includes auxiliary data such as flight notes, field problem descriptions,
analysis plots, and field project meta-data. Data from other measurement
platforms (e.g. surface stations, balloons, satellites) can be included within
the directory structure. A detailed description of the directory structure is
given in Appendix B. While a formal data base, such as mysql, could be used
to store and retrieve information, the additional complexity does not provide
sufficient benefits to make it worthwhile. Storing data within a data base
does not allow aircraft flight information to be browsed as easily as when it
is in a directory structure. Once a data set has been constructed and is
ready to be distributed, then a software framework (e.g. Open-source
Project for a Network Data Access Protocol (OPeNDAP)) could be used for
distribution; however, such a system has not been implemented at this time
due to the limited user base. In the future, an effort will be made to
implement, alongside the currently implemented directory structure system,
a more advanced data set storage system such as OPeNDAP or mysql.
Hopefully, this will stimulate users to take advantage of the features that
such a system offers. These features will likely be important when
conducting analysis across multiple projects.

Results

Quality Control

The terms “quality control” and “quality assurance” have been used in
meteorology in many ways (Lee et al. 2004; Heard 2006). In this
manuscript, the term “quality control” is used to denote the process of
conducting tests to check that measurements are being made correctly and
accurately, while the term “quality assurance” is the process of reviewing a
data set to eliminate (replace with missing value codes) measurements that
are invalid due to known problems.

Quality control of airborne field project measurements typically involves
two steps. The first step is to calibrate instruments using a traceable
standard, and the second step is to check instrument performance during a

9

field project. Calibrations should be done in the lab before the start of a
field project; however, there are often times when a calibration is done after
the conclusion of a field project due to insufficient field project preparation
time. ADPAA uses a single library program (Constants) to provide
calibration constants. The Constants program requires the measurement
date, time, and platform name to provide the correct calibration information
for an instrument. The meta-data header in the ADPAA ASCII files contains
the measurement date and platform information and is automatically passed
into the Constants program during data processing. The M300 data
acquisition system is configured to automatically save files with names
based on the start date and the project table is configured to include correct
values for “Aircraft Type” and “Aircraft ID”. These values are used by the
Level 1 processing code to set correct values in the ASCII file meta-data
header. Documentation of calibrations for all instruments on a platform is
done by defining all calibrations coefficients within a single platform-
specific constants subroutine.

The second step in quality control is to check instrument performance
during a field project. A performance check can involve conducting a
procedure similar to how the instrument is calibrated. For example, the
Forward Scattering Spectrometer Probe (FSSP) used to measure cloud
droplets is calibrated in terms of droplet size by passing borosilicate glass
microspheres of a known size through the instrument. While the FSSP
should be calibrated before and after each field project, performance tests
that involve passing borosilicate glass microsphere through the probe
should be performed on a regular basis during a field project to check that
the probe sizing is similar to its calibration. Figure 3 presents results from a
series of such FSSP performance checks. While the winter field projects are
lower than the theoretical value, they are within the instrument's
calibration uncertainty; however, the summer measurements typically have
very low values and are not consistent with the instrument's calibration;
therefore, measurements during this time period cannot be used for
scientific analysis. Dusty optics was probably the cause of the low summer
performance check values; however, without conducting performance
checks there would be no way of knowing for sure that the FSSP was not
performing correctly. Analysis of data from such ill-performing instruments
can only lead to incorrect theories and possibly inaccurate conclusions.

In addition to performance checks that involve instrument calibration
testing, there are aircraft performance checks to test that an instrument is
coupled to the sampling environment. An excellent example where
environmental coupling performance checks are critical is an aerosol
instrument that uses a pump to draw air into a measurement chamber. For
example, when a cloud condensation nuclei (CCN) counter is operated on a
pressurized aircraft, a hand operated vacuum pump should be used for a
complete test (from inlet to exit) for tubing system leaks. Without

10

quantitative results from such performance checks, the instrument should
not be assumed to be coupled to the environment outside the aircraft.
Analysis of data from measurements not completely coupled to the
environment of interest cannot result in accurate conclusions about that
environment.

While airborne instruments require one or more performance checks to
ensure valid data are being obtained, there is only a limited amount of
personnel time available during field projects to perform the checks. This
limited amount of time underscores the value of software which
automatically processes performance check data. ADPAA has several
features available to help in conducting performance checks and in quickly
reviewing data (Fig. 4). For example, data recorded during FSSP droplet
sizing performance checks are automatically processed and can be quickly
analyzed using ADPAA's Cplot visualization program. Cplot can be used to
determine the exact time interval that microspheres pass through the FSSP,
plot the size spectrum, and calculate the average channel value.

The Cplot visualization program is an example of a part of ADPAA that
can easily be used for analysis of other time series data sets. Cplot currently
can read three different ASCII files formats and is complied as a standalone
IDL module that can be executed using the free IDL virtual machine on
Linux, Windows and Mac platforms. As a demonstration of the usefulness
and robustness of the Cplot routine, a colleague’s time series of surface
based measurements of ice nuclei concentrations was plotted with Cplot
within minutes of first being shown the data files. For Cplot to be used to
analyze a new data set, files have to be in a format that Cplot understands
which can at most require writing a file conversion script.

Quality Assurance

The ADPAA Cplot visualization software is designed to assist with quality
assurance by quickly providing graphical representation of data for
scientific review. Typically, while performing quality assurance, instrument
measurements are reviewed for unusual values, instrument auxiliary data
are checked, and flight notes consulted for problems. Problems identified
are documented in an edit file. The edit file naming convention uses a file
name based on an instrument's “raw” data file name, where the “raw” suffix
is replaced with an “edits” suffix.

An edit file contains the same meta-data header as a data file with each
data line containing a list of parameter values that describe an individual
edit to be applied using the format given in Table 1. The parameters
document states when to apply the edit, what data parameter to edit, what
type of edit to make, when the edit is created, who is making the edit, and
why the edit is being made. Currently, the only edit type implemented is “I”
which means an “invalid” measurement.

11

Edit files are automatically detected and processed by ADPAA to create a
“clean” (quality assured) file where time periods identified as invalid have
“raw” values replaced with missing value codes. The “clean” file is then
used for all subsequent data processing, data averaging, and data set
analysis. ADPAA's file naming convention uses the “raw” suffix to indicate
unedited data at the measurement frequency, the “edits” suffix to indicate a
file that documents quantity assurance edits, and the “clean” suffix to
indicate a data file that has been quality assured. Additional suffix values
(e.g. 10Hz, 1 Hz, 10sec) are used to indicate average data created from a
“clean” data file if it exists; otherwise, the averaged data files are created
from the “raw” data file.

An example of a data edit of an erroneous spike is given in Fig. 5. The
total counts from a Passive Cavity Aerosol Spectrometer Probe (PCASP)
range from approximately 500 cm-3 to approximately 900 cm-3 and then back
to 500 cm-3 during a three second period. The size spectrum shows that
channel one has a very large value compared to channels two and three
(right panel of Fig. 5). An example of a valid spike in the aerosol distribution
can be seen in Fig. 6. The valid spike is nearly an order of magnitude larger
than the surrounding values; however, it lasts for 10 seconds and the size
spectrum shows that the spike occurs in several different channels. Since
invalid (Fig. 5) and valid (Fig. 6) spikes can both have similar magnitudes,
care must be taking when performing quality assurance on PCASP
measurements.

Discussion

The ability to quickly process and visualize data, which the ADPAA
software package makes possible, enables regularly scheduled performance
checks to be conducted throughout a field project. By routinely conducting
performance checks, a quality controlled data set is created for scientific
analyses. Without robust software like ADPAA, there are typically
insufficient personnel resources available on aircraft field projects to
perform all required instrument checks to ensure properly functioning
instruments. Field scientists do their best job; however, post-project quality
assurance often reveals invalid measurements.

The PCASP spike example illustrates by Fig. 5 and Fig. 6 shows the
advantage of having an experienced scientist familiar with an instrument’s
theory and a respective atmospheric parameter’s normal behavior while
conducting data quality assurance. Care must be taken when conducting
quality assurance to only make edits that remove truly invalid data. There
are certain things to look for with each measurement, but no attempt is
made in the ADPAA software package to construct automatic software that
applies edits. It would be a very difficult task to write such a program and it
is felt worthwhile to have a scientist review all measurements. Development

12

effort has instead been put into creating software that makes data
visualization easy and creation of edit files simple.

As the examples in the previous section illustrated, conducting quality
control and quality assurance are important steps to obtaining a valid data
set which can be used for scientific analysis; however, an additional step
which should be conducted is the timely review of data during field projects.
Typically, data is reviewed in real-time by a flight scientist; however,
measurements may seem odd but possibly believable. An example of this
occurred on the 21 June 2008 Polarimetric Cloud Analysis and Seeding Test
2 (POLCAST2) field project (Fig. 7). Without in-depth post-flight review of
the cloud condensation nuclei counter raw measurements, indications of a
leak would probably not have been discovered and the rest of the field
project’s flights could have contained invalid measurements like the 21 June
2008 flight.

White Box Science

The term “White Box Science” is used here analogous to the way white
box testing is used in software engineering (Pressman 2005). With White
Box Science, scientific results can be checked (tested) not only by
comparing scientific results but also by examining, validating and
reproducing the internal aspects of the scientific analysis. This concept is
analogous to white box testing where the internal working of a software
package is tested by examining, validating and testing the source code
instead of just conducting black box testing on the results produced given a
particular input. As an example, consider measurements from any aircraft
instrument used in a scientific field project. With Black Box Science, data
processing would be implemented in the instrument itself using an
embedded executable to conduct real time processing of measurements to
produce derived parameters. With White Box Science, the raw
measurements would be recorded and the source codes used to process
measurements and calculate derived parameters would be available for
scientific review.

White Box science is being practiced when the complete data sets,
including raw data files, quality control data (e.g. ground check data and
calibration data for an aircraft field project), and data processing source
code is published. Some scientists may feel that practicing White Box
Science as described in this paper is costly and unnecessary; however, the
alternative, Black Box Science, has the real significant cost with respect to
one’s time and money. Development and deployment of independent
instrumentation to enable simultaneous measurements of a parameter is
difficult and costly. In addition, when simultaneous measurements are
made, and they invariably do not agree, it can be very difficult to know the
reasons for disagreement without the ability to examine the processing code

13

of each instrument.
Black Box processing can be conducted along with White Box Science

application. In fact, UND scientists use the M300 data acquisition system to
process and display data in real-time on aircraft flights. However, this real-
time data is not used for scientific analysis. Many instruments used in
scientific research (e.g. Condensation Particle Counter) contain software
that only allows Black Box processing. Utilizing these instruments for
scientific research is very attractive since their wide user base lowers the
instrument's cost. However, for scientific research, these instruments must
provide raw measurement parameters, without calibrations being applied,
in addition to internally calculated parameters. This allows for development
of open data processing software which is critical to scientific research.
Ideally, companies would partner with researchers on development of
processing software for their instruments. Researchers are interested in
accurate measurements and hence will develop processing software that
does not utilize as many assumptions. In addition to being an external check
on the accuracy of processing software, researchers can be viewed as
testers of new methods that the company can implement in their future
Black Box data processing. This is similar to the model utilized by the
commercial Linux Company, Red Hat Inc., when they started their open
source Fedora project.

Conclusion

Software to effectively process and quickly analyze aircraft
measurements has been developed. The ADPAA software package can
create preliminary data within hours of an aircraft flight and facilitate
quality control during field projects. Robust software is critically important
to obtaining a scientifically useful data set that can be analyzed to meet
project's objectives and effectively move scientific research forward.
Without necessary software tools to facilitate quality control and quality
assurance of measurements, field projects will only generate meaningless
data and not the desired scientific information. Furthermore, data sets that
have been quality controlled and quality assured as described in this
manuscript, allows for the data sets to be used outside of the research
project they were created for and enable the data set to be combined with
data sets from other research projects (assuming the other project follow
similar procedures). This is very important since research projects in Earth
Science do not have enough observations; therefore, being able to combine
observations from different projects is very important to address many
research questions.

Generation of scientific results in an e-science environment requires
attention to data provenance (Simmhan et al. 2005) for which the ADPAA
frame work provides a base which is applicable to any times series data set

14

found in Earth Science. The ADPAA software has been used successfully for
many years at the University of North Dakota for processing all Citation
Research Aircraft data, in teaching the “Measurement System” graduate
course, and for conducting an airborne training program in Riyadh, Saudi
Arabia in April 2010. During the UND lead Spring 2009 Field Project in
Saudi Arabia, ADPAA was used to process and analyze balloon
measurements to make comparisons between aircraft and rawinsonde
profiles. During the summer of 2010, ADPAA will be used for processing
measurements made on Unmanned Aircraft Systems and surface
measurements obtained as part of the POLCAST3 research project.
Research projects in Mali and Saudi Arabia lead by the Research
Application Laboratory of the National Center of Atmospheric Research
used ADPAA software. The ADPAA software package has been demonstrated
to several companies (Weather Modification Incorporated, Aventech
Research Inc., Airdat LLC). So far, ADPAA has been used mainly for
airborne measurements in atmospheric science research programs;
however, the software package is able to work with any time series data set.
In particular, the Cplot visualization program can be used in the analysis of
any time series data set in the Earth Sciences. While the complexity of a
programmatic solution, such as ADPAA, may appear to pose a steep learning
curve, the amount and complexity of data generated by today's
instrumentation are making old solutions such as spreadsheets less efficient
in the long-term.

Availability and Requirements

Open Source

In November 2008, an open source project for aircraft data processing
was started at Source Forge (Source Forge 2009). Source Forge hosts many
open source projects and makes available several facilities, such as version
control systems (i.e. Subversion (SVN) and Concurrent Versions System
(CVS)), which facilitates open publication of the source code, allows
anonymous download of the source code, and enables several code
developers to work simultaneously. Furthermore, revisions are date
stamped which allows the source code as it existed on a certain date to be
downloaded. Original code for a desired file that was used to produce a
respective data file can be retrieved and used to reproduce data parameters
identical to other completed code executions. This is possible because any
file created contains meta-data that lists the respective processing date.

Currently, ADPAA has four developers, two of which began while
undergraduate students. With the modular design of ADPAA, undergraduate
students can make substantial contribution to research projects by writing
code for a particular module without the need to understand either all the

15

previously written code or the overall processing methodology. The faculty
mentor can review and submit code for students (or any new developer)
until their coding is mature enough to become a developer themselves.
Highly motivated undergraduate students have matured to developer level
after working for approximately one year (includes a full summer) on the
project. Additionally, the Source Forge project is open to developers outside
the University of North Dakota. Current developers are willing to assist new
users that are interested in contributing to the project.

ADPAA is licensed using the GNU General Public License, version 3, 29
June 2007 (General Public License, 2009) which allows anyone to use and
modify the source code. The GNU General Public License is termed a highly
restrictive license since it required that any derivative works remain subject
to the same license and by prohibiting the mixing of open and closed source
code (Lerner and Tirole 2005). The ADPAA source code can be easily
downloaded using a Subversion client (see Software Files section for
details). By hosting ADPAA at Source Forge instead of a local university
server, it is hoped that a larger number of people will use the software and
contribute to the project. A wider user and developer base will likely lead to
more robust software while reducing overall development effort.

Operating System and Programming Language

Before development of the current ADPAA processing package was first
started back in 2002, the aircraft data processing software was completely
implemented using FORTRAN code (SUN compiler) on a UNIX Operating
System (OS). To enable code to be developed in less time, it was decided to
move towards using the Interactive Data Language (IDL) and C-shell (Csh)
wrapper scripts on a UNIX/Linux OS. Presently, in 2010, all the core
processing code in ADPAA is implemented in IDL with csh and Bash
wrapper scripts and it is typically run on Linux (i.e. Redhat, Fedora,
Ubuntu) laptops and workstations. Currently csh scripts are being phased
out, with new and revised scripts being written using Bash. In addition to
IDL code, ADPAA contains code written in FORTRAN (GNU gfortran
compiler), C (GNU gcc compiler), and Perl. While using several
programming languages has the disadvantage of varied programming
syntax, each language has advantages with respect to ease of code
development for particular tasks. For example, Perl is much easier to use
than IDL when filtering ASCII data files. Multi-language implementation is
essential for an evolutionary software development project where a package
has to support ongoing projects (i.e. airborne field projects) while moving
toward using new tools (i.e. moving from FORTRAN to IDL and csh to Bash
scripts).

Even with the many languages used by ADPAA, it only requires a typical
installation of Linux/Unix to run and has been tested on Redhat, Fedora and

16

Ubuntu. While modification of the IDL source code requires an IDL software
license, using ADPAA can be done with only the freely available IDL virtual
machine. Data processing is implemented using many scripts (csh, Bash,
Perl) and hence requires using a Linux type operating system; however, the
Cplot analysis program is written completely in IDL and can be downloaded
(Cplot 2010) and run on the Mac and Microsoft Windows series of operating
systems using a free IDL virtual machine.

Hardware

The computer hardware requirements of the ADPAA software packages
are modest in today’s computer environment. Table 2 shows that ADPAA
compile time and data set processing time ranges from minor (45 seconds
and 100 minutes; respectively) to almost trivial (2 seconds and 34 minutes;
respectively). Since ADPAA requires a lot of data input/output, the data set
storage location can increase the processing time by 10-20% for data sets
stored on a Network File System (NFS) mounted drive and by more 200%
for a data set on USB mounted drives (Table 2). Considering that a typical
complete airborne data set, POLCAST 2, is approximately 9 Gbytes, the data
storage capacity is pretty minor when compared to typical radar or satellite
data sets used in Earth Science research.

Future Direction

Current code development is moving away from the use of licensed,
commercial products toward the use of open-source software to reduce
cost. On the user side, an IDL executable can run using the free IDL virtual
machine; however, developers must have access to a paid license. The need
for an IDL license could greatly limit the number of potential developers,
especially from universities and institutions that are located outside the
United States. Furthermore, open-source software solutions have matured
to the point of offering those necessary features required for many scientific
research projects. Developers of new code are encouraged to use the
programming language that they believe will work best, with a preference
given to using open-source software. While there are several suitable
programming options currently available, it is this author’s opinion that
Python, with library extension such as NumPy (NumPy 2010) and SciPy
(SciPy 2010), is the best overall language for future development. NumPy
provides masked array (Masked Array 2010) module to easily work with
field data. For two dimensional graphics, matplotlib (Matplotlib 2010)
produces publication quality plots including unicode and Latex support and
for 3D –VTK-based visualization there is Mayavi (Mayavi 2010). Powerful
statistical computing is possible in Python via an R bridge (Rpy 2010) that
enables the R programming language to be accessed from within Python
code.

17

Expanding ADPAA to more users and developers will require improved
documentation, which is a near term objective. More technical
documentation is planned to be added to the ADPAA Source Forge web site.
This documentation would include processing diagrams that describe the
sequence of data file creation and depict those scripts utilized for
processing of data from each respective instrument.

In addition to past and current use of ADPAA for research conducted by
the University of North Dakota Citation Research Aircraft, ADPAA has been
used with data obtained from the University of Wyoming King Air Research
Aircraft and several aircraft operated by Weather Modification Inc. (WMI).
While current implementation of ADPAA is set up to process data from a
SEA Inc. data acquisition system, it could be easily modified to work with
other systems. Furthermore, the basic philosophy of ADPAA is to work with
time series data; hence, any time series data could be analyzed using the
tools developed in ADPAA. These time series data could be from platforms
such as Unmanned Aerial Vehicles (UAV) or from surface sites.

While ADPAA implementation is currently limited to the data collected
from instrumentation deployed on previous field projects, and is thus
limited to a select user base, the ADPAA analysis tools have a potentially
wider user base since they work on any time series data. The main ADPAA
analysis tool is Cplot (IDL based) which is used to quickly display
customizable data plots. Only limited future development of Cplot is
planned in the hope of moving towards a completely new analysis package.
Future analysis tool development will look towards utilizing an existing
open source (e.g. Python) based project or collaboration on development of
a new analysis tool. Since NetCDF is a widely-used format, summary data
files are presently converted to NetCDF. However, existing tools (e.g.
ncplot, ncview) for analysis of NetCDF files are found to lack in necessary
features such as a box and whisker plot option and a statistical data analysis
package. A graphical interface driven, open-source software package for
visualization and display of time-series and NetCDF-formatted data, that has
a large developer base and allows easy addition of new features, would be
an ideal analysis tool for our scientific research.

Software Files

The latest version of the Aircraft Data Processing and Analysis (ADPAA)
software package can be downloaded from Source Forge using SVN. Note
that ADPAA has been moved from using CVS to using SVN as the version
control system.

To download ADPAA source code using SVN access:
 Create directory /usr/local/ADPAA if necessary
 Change ownership if necessary, i.e. chown username /usr/local/ADPAA

18

 cd /usr/local/ADPAA
 svn co https://adpaa.svn.sourceforge.net/svnroot/adpaa/trunk
 cd trunk
 mv CVSROOT src .svn ..
 cd ..
 rmdir trunk

Note to compile the many ADPAA modules requires an IDL license.
To build and install executables use the following.
 Create directory /usr/local/ADPAA/bin
 Create directory /usr/local/ADPAA/sav
 Create directory /usr/local/ADPAA/share
 cd /usr/local/ADPAA/src/build/ && make

Define and export variables system (typically in /etc/profile and/or
/etc/csh.cshrc).
 ADPAA_DIR=/usr/local/ADPAA
 IDL_PROG=/usr/local/ADPAA/src
 SVN_EDITOR=vim
 Add /usr/local/ADPAA/bin to your PATH environmental variable.

Test the installation by executing a script such as cplot.

Appendix A

ADPAA uses a standard ASCII data file which contains meta-data in the
header. An example file is given below. Variable labels in curly brackets are
added on the left with an explanation of the labels given below the example
data file.

21 1001 {NLHEAD FFI}
Poellot, Mike {ONAME}
University of North Dakota {ORG}
Citation II Aircraft {SNAME}
Crystal-FACE Field Project {MNAME}
1 1 {IVOL NVOL}
2002 07 18 2003 03 28 {DATE RDATE}
 0.0400 {DX}
Time [seconds]; UT seconds from midnight. {XNAME}
3 {NV=Primary Variables}
 1.0000 1.0000 1.0000 {VSCAL=Scale Factors}
 999999.9999 999999.9999 999999.9999 {VMISS=Missing Values}
Static Pressure [mb] {VNAME[1]}
Air Temperature from the Rosemount Probe [C] {VNAME[2]}
Attack Angle Differential Pressure [mb] {VNAME[3]}
0 {NSCOML=Special comment lines}
4 {NNCOML=Normal comment lines}
Preliminary Data {DTYPE=Preliminary/Final}

19

25 Hz Data {VFREQ=Data Frequency}
 Time STATIC_PR AIR_T_ROSE ATTACK {VDESC=Short Names}
 s mb C mb {VUNITS=Parameter Units}
 60082.0000 1017.6173 36.4922 -0.2349 {Parameter line 1}
 60082.0400 1017.6173 36.4957 -0.2349 {Parameter line 2}
 60082.0800 1017.7436 36.4957 -0.2495 {Parameter line 3}

NLHEAD: Number of lines (integer) composing the file header. NLHEAD is the
first recorded value on the first line of an exchange file.

FFI: ASCII file format number. For the UND Citation aircraft data this will
always be 1001.

ONAME: A character string specifying the name(s) of the originator(s) of the
exchange file, last name first. On one line and not exceeding 132 characters.

ORG: Character string specifying the organization or affiliation of the
originator of the exchange file. Can include address, phone number, email
address, etc. On one line and not exceeding 132 characters.

SNAME: A character string specifying the source of the measurements or
model results which compose the primary variables, on one line and not
exceeding 132 characters. Can include instrument name, measurement
platform, etc.

MNAME: A character string specifying the name of the field project that the
data were obtained from.

IVOL: Volume number (integer) of the total number of volumes required to
store a complete dataset, assuming only one file per volume. To be used in
conjunction with NVOL to allow data exchange of large data sets requiring
more than one volume of the exchange medium (diskette, etc.).

NVOL: Total number of volumes (integer) required to store the complete
dataset, assuming one file per volume. If NVOL>1 then each volume must
contain a file header with an incremented value for IVOL, and continue the
data records with monotonic independent variable marks.

DATE: UT date at which the data within the exchange file begins. For aircraft
data files DATE is the UT date of takeoff. DATE is in the form YYYY MM DD
(year, month, day) with each integer value separated by at least one space.
For example: 1989 1 16 or 1989 01 16 for 16 January 1989.

RDATE: Date of data reduction or revision, in the same form as DATE.

20

DX(s): Interval (real) between values of the s-th independent variable, X(i,s),
i=1,NX(s); in the same units as specified in XNAME(s). DX(s) is zero for a
non-uniform interval. DX(s) is non-zero for a constant interval. If DX(s) is non-
zero then it is required that NX(s) = (X(NX(s),s)-X(1,s)) / DX(s) + 1. For some
file formats the value of DX also depends on the unbounded independent
variable and is expressed as DX(m,s).

XNAME(s): A character string giving the name and/or description of the s-th
independent variable, on one line and not exceeding 132 characters. Include
units of measure and order the independent variable names such that, when
reading primary variables from the data records, the most rapidly varying
independent variable is listed first and the most slowly varying independent
variable is listed last. Currently this is Time [Seconds] from midnight on day
aircraft flight started for all UND exchange files.

NV: Number of primary variables in the exchange file (integer). This number
plus one (for the time value) gives the number of parameters in the data
file.

VSCAL(n): Scale factor by which one multiplies recorded values of the n-th
primary variable to convert them to the units specified in VNAME(n).
Currently this is 1 for all UND Citation Aircraft recorded values.

VMISS(n): A quantity indicating missing or erroneous data values for the n-th
primary variable. VMISS(n) must be larger than any "good" data value, of the
n-th primary variable, recorded in the file. The value of VMISS(n) defined in
the file header is the same value that appears in the data records for
missing/bad values of V(X,n). Currently the majority of UND parameters use
a VMISS value of 999999.9999.

VNAME(n): A character string giving the name and/or description of the n-th
primary variable, on one line and not exceeding 132 characters. Include units
of measure the data will have after multiplying by the n-th scale factor,
VSCAL(n). The order in which the primary variable names are listed in the file
header is the same order in which the primary variables are read from the
data records, and the same order in which scale factors and missing values
for the primary variables are read from the file header records.

NSCOML: Number of special comment lines (integer) within the file header.
Special comments are reserved to note special problems or circumstances
concerning the data within a specific exchange file so they may easily be
found and flagged by those reading the file. If NSCOML=0 then there are no
special comment lines.

21

NNCOML: Number of normal comment lines (integer) within the file header,
including blank lines and data column headers, etc. Normal comments are
those which apply to all of a particular kind of dataset, and can be used to
more completely describe the contents of the file. If NNCOML=0 then there
are no normal comment lines.

DTYPE: Version description of the data. Typically either Preliminary or Final
Data.

VFREQ: Time frequency of the data.

VDESC: A character string on a single line containing a short description of
each variable in the exchange file. No spaces are allowed in each short
variable description.

VUNITS: A character string on a single line containing the units of each
variable in the exchange file. No spaces are allowed in each unit's
description.

Appendix B

The directory structure for ADPAA data sets is described below. The
description starts from the top of the directory tree and works downward.
Each level is defined by a name, notes, and examples. The name is one or
two words that define the name of the level. The notes section contains a
short description of the level. The example section contains example
directories related to the Saudi Arabia 2007/2008 Winter field project.
Items in the directory given below are indented as to indicate which
directory level they are contained within. The directory tree used by ADPAA
has a general directory structure tree as follows.

Project Name/
General Time Period/

General Data Type/
General Instrument Type/

Measurement Purpose/
Particular Time/

Particular Data Type/

A specific example of the directory tree used by ADPAA is given below
with the general directory structure tree name being referenced highlighted
in bold fonts.

NAME:

22

Project Name
NOTES:

This is the top of the directory tree. It groups projects by geographical
regions.

EXAMPLES:
SaudiArabia/
Mali/

NAME:
General Time Period

NOTES:
Groups time periods together that span a single deployment or similar
atmospheric conditions. All sub-directories will follow a similar
structure.

EXAMPLES:
Mali/
SaudiArabia/

Spring07/
Winter0708/
Summer08/

NAME:
General Data Type

NOTES:
Groups different types of data together based on where it is obtained.

EXAMPLES:
Mali/
SaudiArabia/

Spring07/
Winter0708/

Aircraft/
Directory that contains all aircraft data from the
winter project, located in the Winter0708 folder.

Documents/
Directory that contains documents created or related
to the winter project.

Forecast
Directory that contains the forecast data for the
winter project. Forecast data is grouped into year,
month, day sub-directories.

Summer08/

NAME:
General Instrument Type

23

NOTES:
Groups data from different platforms and instruments together.

EXAMPLES:
Mali/
SaudiArabia/

Spring07/
Winter0708/

Aircraft/
KingAir_N825ST/

Documents/
Forecast/

Summer08/

NAME:
Measurement Purpose

NOTES:
Groups data that have a similar purpose together.

EXAMPLES:
Mali/
SaudiArabia/

Spring07/
Winter0708/

Aircraft/
KingAir_N825ST/

DMTCCNCTest/
Contains all test data for the DMT and
CCNC instruments.

Documents/
Directory for aircraft specific
documentation.

Flight/
Directory for the aircraft flight data.

GroundChecks/
Directory for the data related to all
calibration checks and ground tests.

Documents/
Forecast/

Summer08/

NAME:
Particular Time

NOTES:
Groups flights that have a similar start times together. Directory name
based on the start time for the data. If flight has more than 1 files,

24

directory should be named YYYYMMDD_?, where ? is the number of the
flight. Under this directory the names should then be similar to the
standard directory.

EXAMPLES:
Mali/
SaudiArabia/

Spring07/
Winter0708/

Aircraft/
KingAir_N825ST/

DMTCCNCTest/
Documents/
Flight/

20080308_074553/
Directory should have a
name of
YYYYMMDD_HHMMSS. The
name is unique. Additional
information is given in upper
level directory or can be put
in a readme file in the
directory itself.

GroundChecks/
Documents/
Forecast/

Summer08/

NAME:
Particular Data Type

NOTES:
Groups data together based on particular data type.

EXAMPLES:
Mali/
SaudiArabia/

Spring07/
Winter0708/

Aircraft/
KingAir_N825ST/

DMTCCNCTest/
Documents/
Flight/

20080308_074553/
Combined/

Directory that contains data

25

from multiple data streams.
Notes/

Directory that contains flight
M300_Tables/

Contains the M300 tables
used during the flight.

Photos/
Directory for digital images
from the flight.

PostProcessing/
Directory for the post-
processing data stream
which is based on the *.sea
file.

QuickChecks/
Directory for plots of the
data.

RealTime/
Directory for the real-time
data stream which is based
on the

Tamu/
Directory that contains the
DMA and DMT CCNC data
streams.

Video/
Directory to store any video
from the flight.

GroundChecks/
Documents/
Forecast

Summer08/

Acknowledgments Several research projects have indirectly funded the
development of the ADPAA software package and several people have
helped with the software development. Roelof Burger and Duncan Axisa
have helped with the development of the data directory structure. Chris
Kruse, David Keith, Gökhan Sever, Fred Remer, Mike Poellot and Aaron
Bansemer have reviewed and commented on draft versions of the
manuscript.

26

References

Cplot (2010) Download ADPAA Files Now.
https://sourceforge.net/projects/adpaa/files/. Accessed May 2010

Gaines SE, Hipskind RS (2009) Format Specification for Data Exchange.
http://aerosol.atmos.und.edu/ADPAA/formatspec.txt. Accessed July 2009

Gancarz M (2003) Linux and UNIX Philosophy, Digital Press, 12 Crosby Drive,
Bedford, MA 01730, USA

General Public License (2009) GNU General Public License Version3, 29 June
2007. http://www.gnu.org/copyleft/gpl.html. Accessed August 2009

Healy M, Westmacott M (1956) Missing Values in Experiments Analysed on
Automatic Computer, Journal of the Royal Statistical Society, Series C
(Applied Statistics) 5(3):203-206

Heard DE (2006) Field Measurements of Atmospheric Composition, in:
Analytical techniques for Atmospheric Measurement, Blackwell Publishing,
Oxford, UK

Holzwarth S, Freer M, Bachmann M, Wang X (2010) FP7-N6SP-DN6.2.1-List of
Existing Data Pre-processing Software.
http://www.eufar.net/search/doc/doc_pres.php?id_doc=4343&all=1.
Accessed May 2010

Horton NJ, Lipsitz SR (2001) Multiple Imputation in Practice: Comparison of
Software Packages for Regression Models with Missing Variables. The
American Statistician 55(3):244-254

Lee X, Massman W, Law B (2004) Post-field Data Quality Control, in:
Handbook of Micrometeorology: A Guide for Surface Flux Measurement
and Analysis, Kluwer Academic Publishers, Dordrecht, Netherlands

Lerner J, Tirole J (2005) The Scope of Open Source Licensing. Journal of Law,
Economics, and Organization 21(1):20-56; doi:10.1093/jleo/ewi002

Matplotlib (2010) Python Plotting. http://matplotlib.sourceforge.net/.
Accessed May 2010

Masked Arrays (2010) NumPy v1.5.dev8106 Manual (DRAFT).
http://docs.scipy.org/doc/numpy/reference/maskedarray.html. Accessed
May 2010

Mayavi (2010) 3D Scientific Data Visualization and Plotting.
http://code.enthought.com/projects/mayavi/. Accessed May 2010

Murray JJ, Nguyen LA, Daniels TS, Minnis P, Schaffner PR, Cagle MF, Nordeen
ML, Wolff, CA, Anderson MV, Mulally DJ, Jensen KR, Grainger CA, Delene DJ
(2005) Tropospheric Airborne Meteorological Data and Reporting
(TAMDAR) icing sensor performance during the 2003/2004 Alliance Icing
Research Study (AIRS II). 43rd AIAA Aerospace Sciences Meeting and
Exhibit - Meeting Papers Pages 11935-11945

National Aeronautics and Space Administration (1986) Report of the EOS
Data Panel, Vol IIa Earth Observing System Data and Information System.
Technical Memorandum 87777, National Aeronautics and Space

27

http://code.enthought.com/projects/mayavi/
http://docs.scipy.org/doc/numpy/reference/maskedarray.html
http://matplotlib.sourceforge.net/
http://www.eufar.net/search/doc/doc_pres.php?id_doc=4343&all=1
http://www.gnu.org/copyleft/gpl.html
http://aerosol.atmos.und.edu/ADPAA/formatspec.txt
https://sourceforge.net/projects/adpaa/files/.%20

Administration (NASA), Washington, DC
Noble CA; Vanderpool RW; Peters TM; McElroy FF; Gemmill DB, Wiener RW

(2001) Federal Reference and Equivalent Methods for Measuring Fine
Particulate Matter. Aerosol Science and Technology 34(5):457–464

NumPy (2010) Scientific Computing Tools for Python. http://numpy.scipy.org/.
Accessed May 2010

Pinch T. (1985) Towards an Analysis of Scientific Observation: The Externality
and Evidential Significance of Observational Reports in Physics. Social
Studies of Science 15(1):3-36

Prenni AJ, Harrington JY, Tjernstom M, DeMott PJ, Avramov A, Long CN,
Kreidenweis SM, Olsson PQ, Verlinde J (2007) Can ice-nucleating aerosols
affect arctic seasonal climate? Bulletin of the American Meteorological
Society 88(4):541-550; doi:10.1175/BAMS-88-4-541

Pressman RS (2005) Software Testing Techniques, in: Software Engineering: A
Practitioner's Approach, 6th ed., McGraw Hill, New York, USA, 389-428

Rpy (2010) Low-level Interface to R. http://rpy.sourceforge.net/rpy2.html.
Accesed May 2010

Rubin DB (1976) Noniterative Least Squares Estimates, Standard Errors and
F-Tests for Analyses of Variance with Missing Data. Journal of the Royal
Statistical Society Series B (Methodological) 38(3):270-274

Science Engineering Associates (2009) M300 Data Acquisition System.
http://www.scieng.com/support/m300.htm. Accessed December 2009

SciPy (2010) Open-source software for mathematics, science, and
engineering. http://www.scipy.org/. Accessed May 2010

Simmhan YL, Plale B, Gannon D (2005) A survey of data provenance in e-
science. SIGMOD Rec. 34(3): 31-36; DOI=
http://doi.acm.org/10.1145/1084805.1084812

Source Forge (2009) Airborne Data Processing and Analysis.
http://sourceforge.net/projects/adpaa/. Accessed July 2009

Subramanian GH, Gary K, Jiang JJ, Chien-Lung C. (2009) Balancing four
factors in system development projects. Communications of the ACM
52(10):118-121

Sukovich EM, Kingsmill DE, Yuter SE (2009) Variability of graupel and snow
observed in tropical oceanic convection by aircraft during TRMM KWAJEX.
Journal of Applied Meteorology and Climatology 48(2):185-198

28

http://sourceforge.net/projects/adpaa/a
http://www.scipy.org/
http://www.scieng.com/support/m300.htm
http://rpy.sourceforge.net/rpy2.html
http://numpy.scipy.org/

Figures and Captions

Fig. 1 Science Engineering Associates, Inc. model M300 Data Acquisition
System used for aircraft field projects at the University of North Dakota.

Fig. 2 A screen shot showing the automatic processing of the
“09_04_09_12_32_25.sea” data file to obtain a summary file containing
parameters of scientific interest. The processing time was 5 minutes 49
seconds on a workstation, 6 minutes 9 seconds on a workstation with a
remote data file system (GB network), and 6 minutes 19 seconds on a laptop
used in the field.

29

Fig. 3 Average channel values for the FSSP (Serial Number 1947-028-160)
from performance checks conducted during the 2007/2008 field project. All
calibration checks were performed in Saudi Arabia while the FSSP was on
the research King Air 200 aircraft (N825ST). The solid horizontal line
indicates the “standard” average channel value where 15 μm beads
theoretically should be measured.

30

Fig. 4 Screen shot showing “Cplot” being used to analyze the 9 April 2009
summary data file.

31

Fig. 5 PCASP total counts time series (left) and size spectrum (right)
showing an erroneous spike during the first flight on 10 January 2008 in
Saudi Arabia.

Fig. 6 PCASP total counts time series (left) and size spectrum (right)
showing a valid spike during the 12 March 2008 flight in Saudi Arabia.

32

Fig. 7 The 1 Hz averaged total (0.1 – 3.0 µm in diameter) aerosol
concentration measured by the Passive Cavity Aerosol Spectrometer Probe
(PCASP) versus the University of Wyoming Cloud Condensation Nuclei
(CCN) counter concentration (1% supersaturation). The solid green line is a
one-to-one line. All valid out of cloud measurements (FSSP total number
concentration less than 50 # cm-3) obtained during the POLCAST2 field
project are presented. Both the PCASP and CCN counter concentrations
have been adjusted to standard temperature and pressure (STP).

33

Tables and Caption

Table 1 Comma delimited parameters that make up an ADPAA edit file.
Start Time End Time Short Name Type Year Day Of Year Author Reason
Second
from
midnight
when edit
starts.

Second
from
midnight
when edit
ends.

Short name
of the
parameter to
apply edit.

Type of
edit to be
applied.

Year
the
edit
was
made.

Day number
of the year
the edit was
made.

Name of
person
making
edit.

Why the
edit is
being
made.

Table 2 Summary showing the time to compile ADPAA and the time to
process a typical aircraft data set using ADPAA on a range of currently
available computer systems. The processing time is for the Polarimetric
Cloud Analysis and Seeding Test 2 (POLCAST2) field project which had 12
aircraft flights and 15 ground performance checks. The year given is when
the computer hardware was purchased. All systems were running the Red
Hat 5 Operating System (OS) with the exception of laptop, Convection,
which was running the Fedora 12 OS.

Name
(system) Year CPU Cores Memory

Compile
Time

Processing
Time

yyyy Type # MBytes seconds Minutes

Rayleigh
(Workstation) 2005

Intel Pentium 4 CPU
3.00 GHz 1 894 44.6

209.90 (NFS Drive)
99.88 (Local Drive)

Buster
(Workstation) 2006

AMD Athlon 64 CPU
3500 2.20 GHz 1 3,090 42.7

85.93 (NFS Drive)
77.70 (Local Drive)

Convection
(Laptop) 2007

Intel Core2 Duo CPU
T7700 2.40GHz 2 4,116 11.3

169.98 (USB Drive)
57.56 (Local Drive)

Plume
(Server) 2008

Intel Xeon CPU
E5205 1.86GHz 2 16,300 4.0

74.34 (NFS Drive)
68.96 (Local Drive)

Radar2
(Server) 2009

Intel Xeon CPU
X5260 3.33GHz 2 4,116 2.7

41.28 (NFS Drive)
34.35 (Local Drive)

34

	Introduction
	Design and Implementation
	Objectives
	Automation
	Missing Value Code
	Data Format
	Directory Structure

	Results
	Quality Control
	Quality Assurance

	Discussion
	White Box Science

	Conclusion
	Availability and Requirements
	Open Source
	Operating System and Programming Language
	Hardware
	Future Direction
	Software Files

	Appendix A
	Appendix B
	References
	Figures and Captions
	Tables and Caption

